Туре **Range or Cardinality** 2,400 Blocks (s) 240 Blocks (s)

Rapid and incremental exploration without precomputation Incremental data processing for responsiveness

Visualizations designed for scalability

Only targeted single machine scenarios

• Uncertainty visualizations for approximate queries

Bringing modern cluster computing technologies to InfoVis

Incrementally Exploring Large-scale Multidimensional Data

Jaemin Jo jmjo@hcil.snu.ac.kr

Summary _

Wonjae Kim Seunghoon Yoo wjkim@hcil.snu.ac.kr shyoo@hcil.snu.ac.kr

Challenges in low-latency data exploration of large-scale data

Required a large amount of memory (e.g., limited # of dimensions)

Precomputed data structures (e.g., data cubes) have been often used

Bohyoung Kim bkim@hufs.ac.kr

Jinwook Seo jseo@snu.ac.kr

Performance Benchmark

Used Criteo's Terabyte Click Logs dataset

1.03 TB csv, 4.3B entries and 40 dimensions

16 r3.8xlarge instances on Amazon Web Services (AWS)

Intel E5-2670 v2 (32 vCPUs), 244 GB of memory, and 2 * 320 GB SSD

Measured mean interval between two successive responses

• 240 blocks (1.75M rows per block) and 2,400 blocks (17.5M rows per block)

Seoul National University Dept. of Computer Science & Engineering

Exploit in-memory computing engine (i.e. Apache Spark)

Design Consideration

Process results incrementally while estimating the final results

- Adopted gradient plots to visualize the uncertainty of partial results
- 95% confidence intervals of counts and means

Enable flexible scheduling of queries

Pause or stop queries in real time if partial results are enough

Scalability in visualizations

- Binned plots with the Focus+Context techniques
- Designed tailed charts to summarize many categories on the x-axis

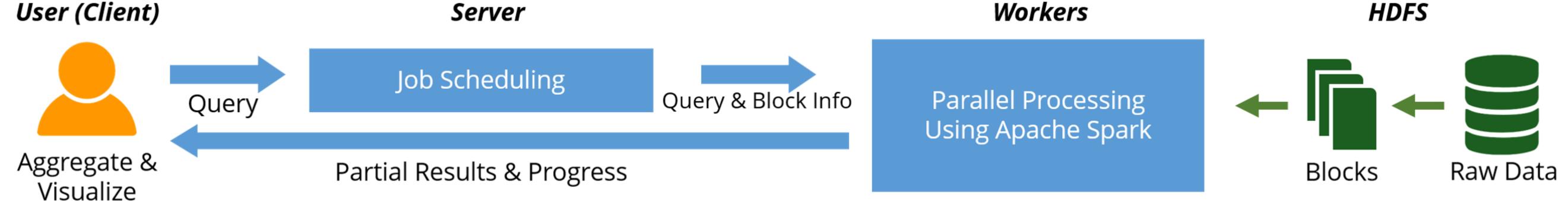
Provide low-fidelity feedback promptly

Based on a small sample from the data (i.e., 0.001% of entries)

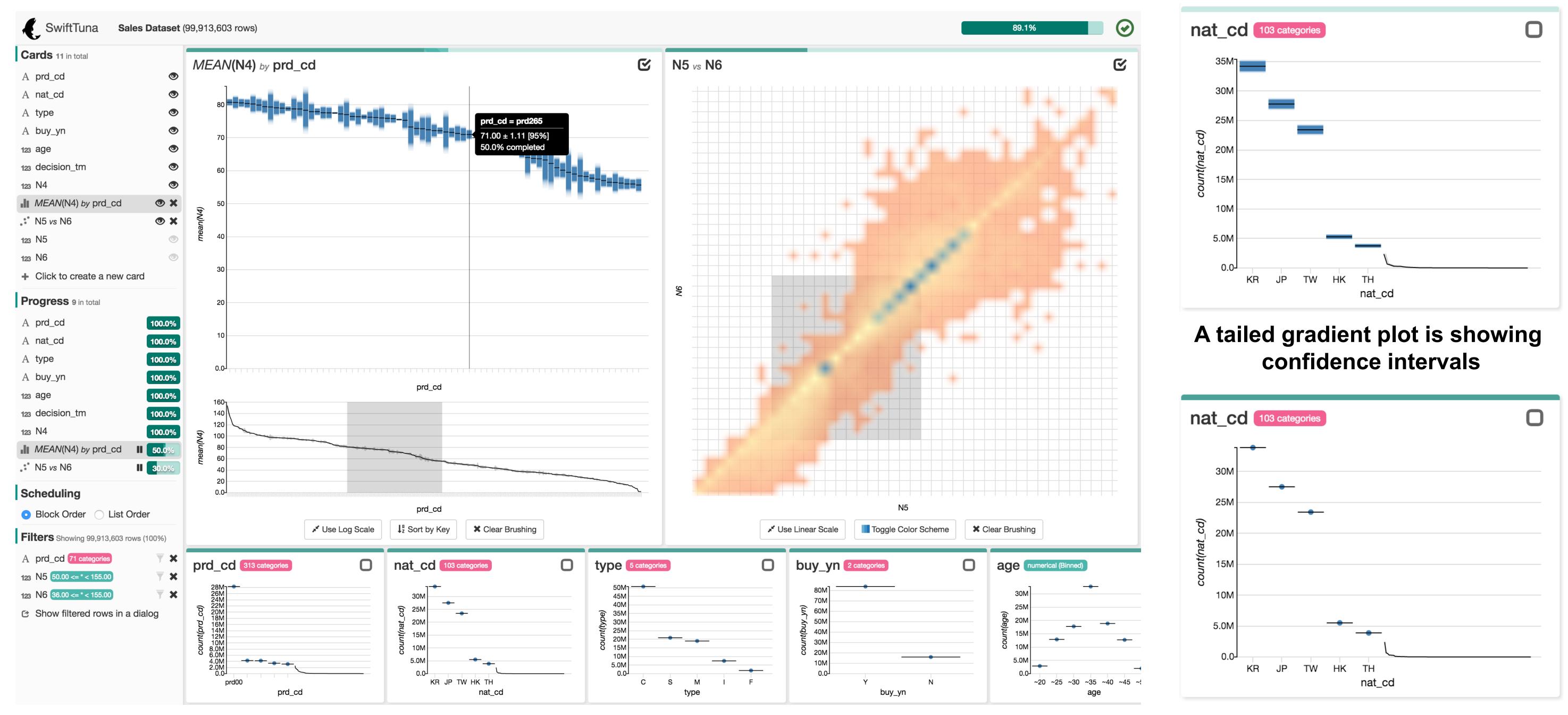
Binned Histogram	0 – 35M	1.91±0.84	3.54±1.58
Density Plot	0 – 746K, 0 – 35M	1.88±0.61	3.46±1.05
Frequency Histogram	20K	2.85±0.78	3.93±1.31
Pivot Dot Plots (MEAN)	0 – 35M, 7.4K	2.53±1.21	3.88±0.93

Each incremental process on a block took approx. 2 seconds

Trade-off between responsiveness and throughput


- Smaller blocks \rightarrow better responsiveness, larger blocks \rightarrow better throughput
- Find the optimum number and size of blocks

Conclusion & Future Work


Proposed an interactive system for fluent exploration of largescale multidimensional data

Harmony between information visualization and distributed computing

Extend the system to a general platform for incremental visual analytics

Interface Design

The main interface of SwiftTuna

A tailed dot plot

