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Abstract

Jaemin Jo

Department of Computer Science and Engineering

College of Engineering | Seoul National University

Understanding data through interactive visualization, also known as visual an-

alytics, is a common and necessary practice inmodern data science. However, as

data sizes have increased at unprecedented rates, the computation latency of vi-

sualization systems becomes a significant hurdle to visual analytics. The goal of

this dissertation is to design a series of systems for progressive visual analytics

(PVA)—a visual analytics paradigm that can provide intermediate results during

computation and allow visual exploration of these results—to address the scala-

bility hurdle.

To support the interactive exploration of data with billions of records, we first in-

troduce Swi�Tuna, an interactive visualization systemwith scalable visualization

and computation components. Our performance benchmark demonstrates that

it can handle data with four billion records, giving responsive feedback every few

seconds without precomputation. Second, we present PANENE, a progressive al-

gorithmfor theApproximatek-NearestNeighbor (AKNN)problem.PANENEbrings

useful machine learningmethods into visual analytics, which has been challeng-

ing due to their long initial latency resulting from AKNN computation. In partic-

ular, we accelerate t-Distributed Stochastic Neighbor Embedding (t-SNE), a pop-

ular non-linear dimensionality reduction technique, which enables the respon-

sive visualization of data with a few hundred columns. Each of these two con-
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tributions aims to address the scalability issues stemming from a large number

of rows or columns in data, respectively. Third, from the users’ perspective, we

focus on improving the trustworthiness of intermediate knowledge gained from

uncertain results in PVA. We propose a novel PVA concept, Progressive Visual An-

alytics with Safeguards, and introduce PVA-Guards, safeguards people can leave

on uncertain intermediate knowledge that needs to be verified.We also present a

proof-of-concept system, ProReveal, designed and developed to integrate seven

safeguards into progressive data exploration. Our user study demonstrates that

people not only successfully created PVA-Guards on ProReveal but also voluntar-

ily used PVA-Guards to manage the uncertainty of their knowledge. Finally, sum-

marizing the three studies, we discuss design challenges for progressive systems

as well as future research agendas for PVA.

Keywords: Information Visualization; Human-computer Interaction; Visual Ana-

lytics; Progressive Visual Analytics; Big Data; Large-scale Data; User Interaction;

Dimensionality Reduction; User Study

Student Number: 2014-21782
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Chapter 1

Introduction

Data sizes matter.

Tight collaboration between humans and computers through interactive

visualization is a necessity in modern data science for understanding data.

However, as data sizes have rapidly increased even for data analysis in ca-

sual circumstances, computation latency becomes a significant challenge to

visual analytics. Despite the enormous advances in the speed of computing

hardware, it is always possible to conceive a dataset that is too large to be

queried in a reasonable time. In this dissertation, we present systems and

algorithms for Progressive Visual Analytics (PVA)—visual analytics with an

ability to accessing the intermediate results of computation—to enable scal-

able and reliable visual exploration of large-scale data.

1.1 Background and Motivation

Information visualization (InfoVis) leverages the humanvision system,which

has evolved to efficiently extract information from natural environments, to

convey the characteristics of abstract data. With well-designed visualization,

humans can understand and analyze complex data faster and more accu-
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rately even without attention (i.e., preattentive processing [123]) than with

conventional textual representation such as descriptive statistics [100]; for in-

stance, Anscombe’s quartet [11] exemplifies that visualization can unearth

the underlying patterns of data that are invisible in descriptive statistics.

Although the earliest examples of InfoVis were static, mostly comprised

of geographical maps drawn on papers, interactive visualization is now re-

garded as a core component in InfoVis. The most significant advantage of

human interaction in InfoVis is that it increases the scalability of data explo-

ration [97]; while a single static visualization can show only a limited scope

of data, interaction allows people to view themultiple aspects of the data on a

single screen. Analytical reasoning facilitated by interactive visual interfaces,

formally called Visual Analytics [34], has now become an essential paradigm

in understandingmassive data in various fields such as astronomy, business,

disaster and emergency management, security, and health [67].

However, over the past decades, we witnessed that the volume of data

had increased at unprecedented rates, and the sheer size of data in modern

data analysis has now become a major barrier to visual analytics. For exam-

ple, a public enterprise dataset [37] contains over 4.3 billion logs about users’

click events, and the GAIA dataset [28] has astrometric measurements of

about 1.7 billion sources. Even on modern desktops, loading and processing

such datasets require minutes to finish, making visual analytics no longer

interactive. Using more powerful hardware can be a solution to this prob-

lem; however, the rate of improving the speed of processors is much slower

than that of the capacity of collecting and storing data, which makes such

a solution costly and impractical. From this perspective, conventional mono-

lithic visualization systems—systems that respond after fully processing a
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visualization query on the entire data—are not effective for the exploration

of large-scale data common nowadays.

In contrast to monolithic visualization systems, progressive visualization

systems allow humans to access intermediate results of a query even when

the whole computation is not completed [45, 120]. Visual analytics through

progressive computation, also knownasProgressiveVisual Analytics (PVA) [120],

has demonstrated its effectiveness in exploring large-scale datasets such as

event sequences [120], high-dimensional data [106], and socialmedia data [14].

The main goal of PVA is to provide a sequence of continuous feedback to

people, which approximates the precise result with increasing accuracy so

that people can steer the exploration with less interruption and make their

decisions early.

In this dissertation, based on the notion of PVA, we design and develop a

series of progressive systems and algorithms as well as proposing a novel

PVA concept altogether for scalable and reliable data exploration. We fo-

cus on three critical challenges in PVA applications in practice, namely: 1)

Vertical Scalability, 2) Horizontal Scalability, and 3) Knowledge Trust-

worthiness. First, for interactive exploration of data with a few billion rows

(Vertical Scalability), we introduce SwiftTuna that supports visual analyt-

ics on large-scale data with scalable visualization components and respon-

sive interaction without precomputation. Second, for responsive visualiza-

tion of data with a few hundred columns (Horizontal Scalability), we present

PANENE, a progressive algorithm for the Approximate k-Nearest Neighbor

(AKNN) problem that enables the progressive computation of t-Distributed

Stochastic Neighbor Embedding (t-SNE) of high-dimensional data. Finally,

for the reliability of the intermediate knowledge garnered from progressive

data exploration (Knowledge Trustworthiness), we propose a novel PVA

4



concept, Progressive Visual Analytics with Safeguards, and develop a proof-

of-concept system ProReveal.

1.2 Thesis Statement and Research Questions

Thesis Statement Well-designed progressive systems and algorithms can

overcome the scalability and reliability challenges of visual analytics univer-

sal in modern data science, enabling the responsive and trustworthy explo-

ration of large-scale multidimensional data.

To support the statement, we pose and address the following research

questions in this dissertation:

RQ1. Vertical Scalability: how do we enable interactive visual exploration

of large-scale data with scalability in both data processing and visual-

ization?

RQ2. Horizontal Scalability: how do we responsively embed and visualize

high-dimensional data on a 2D spacewithout long initial computation

delays?

RQ3. Knowledge Trustworthiness: how do we improve the trustworthi-

ness of intermediate knowledge gained from progressive visual an-

alytics?

1.3 Thesis Contributions

The contributions of this dissertation are as follows:

1. Design, development, and quantitative evaluation of SwiftTuna, an inter-

active system for exploring large-scale multidimensional data with a few

billion rows.
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2. Development of PANENE and its applications, such as Responsive t-SNE,

along with system benchmark.

3. Definition and discussion on a novel PVA concept, Progressive Visual

Analytics with Safeguards, and the development and user evaluation of

a proof-of-concept system ProReveal.

1.3.1 Responsive and Incremental Visual Exploration of Large-scale
Multidimensional Data

Addressing RQ1, we present SwiftTuna (Figure 1.1), an interactive system

that streamlines the visual information seeking process on large-scale mul-

tidimensional data. For the interactive exploration of large-scale data, a pre-

processing scheme (e.g., data cubes) has often been used to summarize the

data and provide low-latency responses. However, such a scheme suffers

from a prohibitively large amount of memory footprint as more dimensions

are involved in querying and a strong prerequisite that specific data struc-

tures have to be built from the data before querying. SwiftTuna exploits an

in-memory computing engine, Apache Spark, to achieve both scalability and

performancewithout buildingprecomputeddata structures.We also present

a novel interactive visualization technique, tailed charts, to facilitate large-

scalemultidimensional data exploration. To support responsive querying on

large-scale data, SwiftTuna leverages an incremental processing approach,

providing immediate low-fidelity responses (i.e., prompt responses) as well

as delayed high-fidelity responses (i.e., incremental responses). The perfor-

mance evaluation of SwiftTuna demonstrates that SwiftTuna allows data ex-

ploration of a real-world dataset with four billion records while preserving

the latency between incremental responses within a few seconds.
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Figure 1.1: The Swi�Tuna Interface

1.3.2 Progressive Computation of Approximate k-Nearest
Neighbors and Responsive t-SNE

To approach RQ2,we present PANENE (Figure 1.2), a progressive algorithm

for approximate nearest neighbor indexing and querying. Although the use

of k-Nearest Neighbor (KNN) libraries is common in many data analysis

methods, most KNNalgorithms can only be queriedwhen thewhole dataset

has been indexed, i.e., they are not online. Even the few online implementa-

tions are not progressive in the sense that the time to index incoming data

is not bounded and cannot satisfy the latency requirements of progressive

systems. This long latency has significantly limited the use of manymachine

learning methods, such as t-SNE, in visual analytics. PANENE is a novel al-

gorithm for Progressive Approximate k-NEarest NEighbors, enabling fast

KNN queries while continuously indexing new batches of data. Following

the progressive computationparadigm, PANENEoperations can be bounded

7



Figure 1.2: Responsive 2D Embedding of the MNIST dataset [71] using PANENE

in time, allowing analysts to access running results within an interactive

latency. PANENE can also incrementally build and maintain a cache data

structure, a KNN lookup table, to enable constant-time lookups for KNN

queries. Finally, we present three progressive applications of PANENE, such

as regression, density estimation, and Responsive t-SNE, opening up new

opportunities to use complex algorithms in interactive systems.

1.3.3 Progressive Visual Analytics with Safeguards

To answer RQ3, we present a new visual exploration concept—Progressive

Visual Analytics with Safeguards—–that helps people manage the uncer-

tainty arising from progressive data exploration. Despite its potential ben-

efits, intermediate knowledge from progressive analytics can be incorrect

due to various machine and human factors, such as a sampling bias or mis-

interpretation of uncertainty. To alleviate this problem, we introduce PVA-

Guards, safeguards people can leave on uncertain intermediate knowledge

that needs to be verified, and derive seven PVA-Guards based on previous

visualization task taxonomies. PVA-Guards provide a means of ensuring the

correctness of the conclusion and understanding the reason when interme-

diate knowledge becomes invalid. We also present ProReveal (Figure 1.3), a

proof-of-concept system designed and developed to integrate the seven safe-
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Figure 1.3: The ProReveal Interface

guards into progressive data exploration. Finally, we report a user studywith

14 participants, which showed people voluntarily employed PVA-Guards

to safeguard their findings and ProReveal’s PVA-Guard view provides an

overview of uncertain intermediate knowledge.

1.4 Structure of Dissertation

The rest of this dissertation is organized as follows: First, Chapter 2 presents

a brief survey on the definition, systems, and models of PVA as well as pre-

vious work for scalable visualization systems apart from PVA. Chapter 3 il-

lustrates the SwiftTuna system, describing its design considerations as well

as implementation details. We also present a performance benchmark us-

ing a real-world dataset with four billion records. Chapter 4 presents the

PANENE algorithm and its application, such as Responsive t-SNE. We re-

port on the performance measurements of our algorithm in terms of latency

and accuracy through a benchmark on two real-world datasets with 100 di-
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mensions. Chapter 5 describes our novel PVA concept, Progressive Visual

Analytics with Safeguards, and a proof-of-concept system, ProReveal. We

also report on a user study with 14 participants to evaluate the usability of

ProReveal and check if and howpeople interact with PVA-Guards. Chapter 6

discusses lessons learned from the whole course of the dissertation, oppor-

tunities for improving the systems, and future research agendas for PVA.

Finally, Chapter 7 concludes the dissertation by summarizing the contribu-

tions and presents promising directions for future research.

10



Chapter 2

RelatedWork

In this chapter, we survey previous work from four thematic areas. First, we

provide an overview of research contributions that have been made for Pro-

gressive Visual Analytics (PVA) since its first definition was given in 2014.

Second, apart from PVA, we also review InfoVis systems and techniques that

enable responsive interactionswith large-scale data such as data cubes.Next,

we review previous research on the k-Nearest Neighbor (KNN) problem

and the t-Distributed Stochastic Neighbor Embedding (t-SNE) technique

in the third and fourth sections respectively before we provide progressive

computation approaches for them.

2.1 Progressive Visual Analytics

2.1.1 Definitions

What is PVA? Since Stolper et al. [120] first introduced PVA in 2014, there

has been extensive discussion on the definition and requirements of PVA.

Most early attempts have been made to especially distinguish it from sim-

ilar computation paradigms, such as online computation and approximate

query processing (AQP). Although there is still ongoing discussion on the
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definition of PVA, in this section, we cover the threemost relevant definitions

from the most inclusive one to the most narrow one.

Stolper et al. defined PVA as “a paradigm that gives users access to se-

mantically meaningful partial results during the execution of analytics, and

allows exploration of these partial results in integrated, interactive visualiza-

tions” [120]. There are two important things to note in the definition. First,

Stolper et al.’s definition does not restrict the interval between two partial

results. This means any system that gives partial results can be progressive

even though such a system would not be much useful if the interval is too

long. Second, PVA is not only about speeding up computation; PVA systems

should provide appropriate visualizations that allow people to explore the

partial results interactively.

From a computation perspective, Fekete and Primet [45] defined pro-

gressive computation is computation that 1) returns a sequence of partial

results on a growing subset of the original data 2)with a limited time interval

q between the partial results 3) satisfying a property that the sequence of the

partial results converges to the final result. Compared to Stolper et al.’s defi-

nition, Fekete and Primet defined progressiveness more strictly; the interval

betweenpartial results can be bounded a quantum q. Therefore, a system that

gives intermediate results in the middle of computation (i.e., online [57]) is

not progressive unless the interval between the results is guaranteed. How-

ever, in practice, it is very challenging to develop a system that guarantees to

always respond in the given time limit. Still, PVA systems that can keep the

latency within a reasonable bound for most cases would be useful.

The most recent definition of progressive computation discussed in the

Dagstuhl seminar [44] is “computation bounded on time and data which re-

ports intermediate outputs, namely a result, ameasure of quality, and amea-
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sure of progress,within bounded latency, converging towards the true result,

and controllable by a user during execution either by aborting, pausing, etc.,

or by tuning parameters (steering).” This definition explicitly mentions user

steerability of computation; the user should be able to control the execution

of progressive computation in any form, such as by pausing or resuming the

computation.

These three definitions vary in terms of strictness, but they help us to

understand the difference between progressive computation and other com-

putation schemes. For example, online computation is akin to progressive

computation [23] in that the user can graspmeaningful partial results before

the whole computation is finished, but online computation does not guaran-

tee the interval between partial responses. Similarly, iterative methods differ

from progressive computation in that its algorithmic parameters cannot be

changed by users interactively.

2.1.2 System Latency and Human Factors

Shorter latency is desirable for InfoVis systems [78]. However, in general,

there is a trade-off between the latency and the throughput of a PVA system

since delivering intermediate outcomes interrupts computation and thus im-

poses overhead. Then, how fast should a PVA system respond, striking a

balance between the latency and the throughput? In the human-computer

interaction (HCI) field, researchers have actively studied how the latency of

a computing system affects user behavior and experience [78, 89, 99, 114],

and these studies can provide a guideline on the time limit of a PVA system.

Liu and Heer [78] found that an extra delay of 500 ms decreased user

activity, dataset coverage, and the rate at which users make observations.

However, they injected the delay during user interactions, such as zooming
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and panning, which is more intrusive than having the same amount of de-

lay when visualization is initially drawn. Nielsen [99] distinguished three

time limits for users’ perception and attention: 0.1 second for feeling that

the system is continuous (e.g., for animations), 1.0 second for maintaining

the user’s flow of thought, and 10 seconds for keeping the user’s attention.

Similar guidelines on latency have also been suggested by other researchers;

for example, Miller [89] argued that response delays longer than 10 seconds

would not permit users to think continuously and sustain problem-solving

that contains a high degree of ambiguity.

Experiments in HCI have also shown that people can operate on visu-

alization that is incrementally updated within a latency of a few seconds.

For example, Fisher et al. [48] presented a prototype interface, sampleAction,

which incrementally visualizes aggregates (i.e., a mean) with their confi-

dence intervals. Through a user study with three data analysis experts, they

found the experts were able to interpret confidence intervals for faster deci-

sion making, advocating the use of incremental query processing. To under-

stand how progressive visualizations influence human behavior during ex-

ploratory data analysis, Zgraggen et al. [139] compared instantaneous, pro-

gressive, and blocking visualization using insight-based metrics such as the

number of insights found perminute. They found that progressive visualiza-

tion outperformed blocking visualization, even producing a comparable per-

formance to ideal instantaneous visualization. Similar results were shown in

Badam et al.’s user study [14], where a progressive interface, InsightsFeed,

and its instantaneous version showed similar performance in terms of an-

swer accuracy and user preferences.

To sum up, the acceptable time limit varies depending on users’ situa-

tions, dataset sizes, and analysis types; however, a time limit of a few sec-
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onds up to 10 seconds can be regarded as a reasonable and feasible time

limit, aligned with the previous guidelines on latency and empirical study

results.

2.1.3 Users, Tasks, and Models

Munzner [97] introduced a what-why-how framework for analyzing the us-

age of visualizations, and we can cast similar questions to PVA: who uses

PVA, why they use PVA, and how PVA systems should be built.

Who uses PVA and Why do they use PVA? Micallef et al. [88] classified

the users of PVA systems into three types: Observer, Searcher, and Explorer.

Observer is a group of users who are interested in the output of a progres-

sive process rather than interacting with the intermediate outcomes of the

process. They want to monitor the progression of an algorithm, expecting

the underlying process reaches to a predictable end. For example, a machine

learning expert who wants to check if a training process proceeds well (e.g.,

with decreasing loss) can be an Observer. Their main tasks include ascer-

taining the quality or quantity of progressive outcomes and understanding

the inner workings of a progressive algorithm. The second group of users,

Searcher, are interested in answering a concrete question to large-scale data

using PVA. Since Searcher often has a domain-specific time-critical question,

it is important to show the uncertainty of answers and possible fluctuations

or jumps in the uncertainty. The main tasks of Searcher also include compar-

ing different executions of computation (e.g., executions with different pa-

rameters) to assess its robustness. The last group of users, Explorer, focuses

on exploring data and building a comprehensive understanding. Among the

three groups of users, Explorer is most interested in performing open-ended
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exploration. The tasks of Explorer include gaining an overview of data or

parameter spaces and investigating alternative scenarios.

There are also useful models that explain and characterize existing sys-

tems as well as providing guidelines on future systems. Mühlbacher et al.

[94] characterized four strategies, such as data subsetting, complexity selec-

tion, divide and combine, and dependent subdivision, to increase user in-

volvement in existing sequential algorithms. They also presented four types

of user involvement according to two axes: the direction of information (feed-

back vs. control) and entity of interest (execution vs. result). Schulz et al.

[111] defined partitioned data and visualization operators based on the es-

tablished Data State Reference Model [32] to facilitate intermediate visual-

ization updates.

Reviewing the results of previous studies on PVA, Angelini et al. [8] pre-

sented a comprehensive survey of existing progressive systems, especially

describing the requirements and guidelines on PVA. Two of the major chal-

lenges of PVA they identified are (1) judging partial results and (2) handling

fluctuating or even diverging progressions, which we want to address by in-

troducing PVA-Guards as a means of managing the uncertainty from PVA.

Angelini et al. [7] proposed ten fundamental quality indicators for showing

the progression, stability, and certainty of intermediate results. ProReveal

provides indicators for absolute progress (i.e., the amount of data processed

so far), relative progress (i.e., the amount of data processed in the last itera-

tion), and absolute certainty (e.g., a confidential interval for a bar). Finally,

regarding interactions on progressive interfaces, Wu et al. [135] emphasized

the importance of cumulatively rendering asynchronous results to improve

the perceived speed and usability of interactive visualizations.
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2.1.4 Techniques, Algorithms, and Systems

With the benefits of PVA, many researchers have endeavored to adopt pro-

gressive computation in domain-specific scenarios, expanding the border of

PVA. The pioneering work of Stolper et al. [120] provided a progressive im-

plementation of the SPAM algorithm [13] for extracting common patterns in

event sequences. Enabling PVAon deep neural networks, Pezzotti et al. [105]

presented DeepEyes, which supports detailed analysis while training a neu-

ral network. Sperrle et al. introduced the concept of Speculative Execution

[118] that allows effective model optimization and refinement through pro-

gressive computation. Badam et al. [14] introduced InsightFeed for explor-

ing Twitter data at scale. Vidal et al., [129] presented a progressive algorithm

for Wasserstein barycenters of persistence diagrams.

Progressive exploration of multidimensional data is another important

research area. Pezzotti et al. [106] introduced approximate t-Distributed Stochas-

tic Neighbor Embedding (A-tSNE), which significantly lowered the long la-

tency of the t-SNE algorithm [84]. Choo et al. and Kim et al. [33, 68] pre-

sented the per-iteration visualization environment (PIVE) that allows users

to interact with intermediate results of multidimensional dimensionality re-

duction and clustering methods. Turkay et al. [124] proposed DimXplorer

that integrates the incremental PCA and mini-batch k-means clustering al-

gorithms with data exploration.

Frameworks and techniques for efficient progressive computation and

hypothesis building have also been suggested. Fekete andPrimet implemented

the Progressivis Toolkit [45] to provide a general and systematic platform

for progressive implementations. Li andMa [74] proposed P5, Portable Pro-

gressive Parallel Processing Pipelines that aimed at interactive data analy-

sis and visualization on web browsers using GPU acceleration. Stat! [17] is
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another interactive analytics environment for large-scale data that provides

incremental and cumulative results based on SQL-like data queries. In Swift-

Tuna and ProReveal, we focus on interactive data analysis on web browsers

as well as seeking better scalability in both visualization and data process-

ing by leveraging user interactions (e.g., Overview+Detail [132]) and a dis-

tributed computing engine, Apache Spark [138]. Glueck et al. [52] presented

the Splash framework,which allows real-time on-demandnavigation of large-

scale data. For more efficient and robust sampling, Rahman et al. [108] pro-

posed sampling-based incremental visualization algorithms that capture the

salient feature of a visualization quickly. Finally, Zhao et al. [140] devised

heuristics for eliciting hypotheses from visualization, and developed multi-

ple hypothesis testing controls to manage false discoveries.

Moritz et al.’s research on optimistic visualization [90] is one of the stud-

ies that motivated the application of safeguards to PVA. In optimistic visual-

ization, people explore data “optimistically,” trusting early uncertain results

from a visualization. Later, when the precise result is ready, people return

to the visualization and check if there is a big difference between the earlier

one and the precise one, which can be a signal of errors. In our work, how-

ever, we consider analysis scenarios where the precise result is not feasible

in a single session due to long computation time. Therefore, rather than fa-

cilitating the comparison between the two results, we provide continuous

feedback on the validity of intermediate knowledge that is statistically es-

timated, and notify people when intermediate knowledge becomes invalid.

Furthermore, we allow people to formulate their intermediate knowledge in

a structured form (i.e., PVA-Guards) rather than plain text, which is used to

delegate the validation process to the system and enable people to continue

their exploration.
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2.1.5 Uncertainty Visualization

Intermediate results in PVAbynature are uncertain since the results are com-

puted on a sample of data or they have not converged yet. Visualization

for uncertainty has been extensively studied in the scientific visualization

area [102] since scientific measurements often contain observational errors.

It has been known that specific visual variables, such as fuzziness (or blur-

riness) and transparency, can be connected to uncertainty more intuitively

than other variables [85]. Another intuitive visual variable is sketchiness, al-

though it shows a higher perception error than blurriness and grayscale [25].

Related to PVA, Fisher et al. [48] visualized the confidence intervals of in-

termediate results to observe how analysts interact with incremental visual-

izations. They found that encoding the confidence intervals with traditional

error bars was not easily understandable, demanding new ways to repre-

sent them for incremental visualizations. Based on the lesson learned from

the sampleAction project, Fisher et al. [47] designed alternative visualiza-

tions for error bars, i.e., density strips and modified box-percentile plots. As

other alternatives to error bars, Correll et al. [35] presented gradient plots

and violin plots that outperformed error bars for inferential tasks. For visu-

alizing the uncertainty of bivariate maps, Correll et al. [36] proposed Value-

Suppressing Uncertainty Palletes (VSUPs), which represent uncertainty by

combining the lightness and saturation channels. Another recent technique

for showing uncertainty in scatterplots is Winglets [82], which encodes the

uncertainty in the class membership of each data point by the orientation

of length of two small curves (i.e., wings) near the point. In SwiftTuna and

ProReveal, we employ gradient plots and heatmaps with VSUPs for their ef-

fectiveness.
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2.2 Approaches for Scalable Visualization Systems

Even before Stolper et al. introduced PVA [120], there has been a body of

work to achieve the scalability of interactive visualization systems. Accord-

ing toGodfrey et al. [53], these systems can be categorized into twoparadigms:

the preprocessing paradigm and the non-preprocessing paradigm.

The preprocessing paradigm includes systems that preprocess data to

build a specific data structure in advance anduses this result for future queries.

For example, online analytical processing (OLAP) cubes have been often

used to summarize large data [31]. An OLAP cube is a multidimensional

data structure that maps each categorical attribute in data to a dimension

of the cube and precomputes statistical summaries, such as count or sum,

for each combination of dimensions. Once built, an OLAP cube can process

group-by queries very efficiently by looking up the corresponding cells in-

stead of scanning the full data. However, themajor limitation of OLAP cubes

is its large memory footprint since the number of cells in the cubes grows

exponentially as more dimensions are included in the cubes. Furthermore,

data cubes must be built before querying, which is impractical for cold-start

analytics—exploration without time-consuming precomputation [91].

To address the memory footprint issue, recent research has proposed

space-efficient variants of data cubes. For example, imMens [79] introduced

multivariate data tiles to support interactive linking between visualizations.

These multivariate data tiles are small enough to be loaded and processed

on a web browser, saving the cost of querying a remote server. Another ex-

ample is Nanocubes [76], a hierarchical data structure for querying multidi-

mensional spatiotemporal data. Nanocubes has been improved for various

purposes: for more compact data structures using arrays [101], for model-
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ing capabilities [131], for accelerating spatial visualization dashboards [136],

and for adaptive data management [77]. However, still, it takes a few hours

to initialize these cubeswith a billion of data rows; for example, it took longer

than one hour to initialize one of the state-of-the-art techniques [136] with

700 million data rows (about 100 GB).

On the other hand, non-preprocessing approaches responsively process

data in a scalable manner upon a query, which is more useful for cold-start

analytics. As shown in the CONTROL project [54, 56, 57], online aggregation

builds and processes a sample at the query time, visualizes the estimates of

a query with confidence intervals. The answers continually improve (e.g.,

the confidence intervals converge as more data points are sampled), allow-

ing users to observe and control the results on the fly. In the database com-

munity, this computation scheme is called Approximate Query Processing

(AQP). An example of AQP databases is BlinkDB [2], which generates mul-

tidimensional stratified samples to allow users to trade-off query accuracy

for response time.

Another non-preprocessing approach to scalable visualization systems

is to process large-scale data on a distributed computing cluster and visual-

ize aggregated results. Apache Hadoop [115] is one of the most successful

ecosystems to handle large-scale data. Apache Hadoop includes a parallel

processing component, MapReduce [40]; however, MapReduce itself is im-

practical for low-latency querying since it spills intermediate computation

results on disks, usually imposing a delay exceeding our latency threshold

(i.e., 10 seconds). For example, Im et al. [59] presented amodifiedMapReduce-

style algorithm in their VisReduce system for fast incremental data process-

ing for visualization, arguing against the preprocessing scheme.
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In-memory computing technology significantly spedup the performance

of MapReduce while still keeping the flexibility of the non-preprocessing

paradigm. We leverage an in-memory general processing engine, Apache

Spark [138]. Apache Spark keeps data and intermediate results in the main

memory to minimize disk I/O instead of writing them on disks. Since the

mainmemory is cheaper nowadays,Apache Spark gains its popularity for in-

memory processing of large-scale data. Built upon Apache Spark, Shark [43]

allows querying large-scale data with SQL. Shark has been integrated into

Apache Spark as SparkSQL [12]. Using SparkSQL, several web applications

such as Databricks, Hue, and Apache Zeppelin integrated interactive data

analytics with cluster computing. However, those applications only provide

a limited number of mostly static visualization presets without supporting

important interactions such as brushing and filtering. SwiftTuna incremen-

tally processes data on a computing cluster and visualizes results with scal-

able visualizations and interactions that are designed to support large-scale

data exploration.

2.3 The k-Nearest Neighbor (KNN) Problem

The early approaches to the k-nearest neighbor problem focused on finding

the exact neighbors of a query point. First introduced in the seminal work

by Bentley [20], k-d trees have been one of the most widely used methods

for KNN queries. The original k-d tree iteratively splits the space with axis-

aligned hyperplanes and builds a binary tree, allowing a logarithmic time

complexity for KNN queries [50]. At each level in the tree, data is divided

into two groups along the dimension in which the data has the highest vari-
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ance. Then, the tree can be used to reject points in distant subspaces early on

for a more efficient search.

While the original k-d trees are effective for searching in low-dimensional

spaces, they suffer from significant performance degradation as the dimen-

sionality of data increases; this problem is related to the so-called “curse of

dimensionality” [87]. To overcome this limitation, recent research relaxed

the requirements of KNN search by allowing it to return approximate neigh-

bors with parameters for controlling the quality. These techniques, which

are called approximate k-nearest neighbor (AKNN) search, are not guaran-

teed to return the exact k-nearest neighbors of a query point but good ap-

proximates of neighbors that are close to the query point in a short time.

Due to their flexibility, AKNN techniques have become common in modern

toolkits such as scikit-learn [103] andOpenCV [26].We can categorize popu-

lar AKNN techniques in three families: space-partitioning trees, hash-based,

and graph-based.

The simplest data structures for KNN are space-partitioning trees. They re-

cursively divide amultidimensional space and build a tree structure that can

be used to accelerate searching. Many k-d tree variants have been proposed

to reduce the query time for KNN searches. Beis and Lowe [19] showed that

limiting the number of visited nodes in a k-d tree could bring a large re-

duction in the query time with a small loss in accuracy. For KNN search

in higher-dimensional spaces, Silpa-Anan and Hartley [116] presented the

idea of multiple randomized k-d trees where data is recursively split along

a dimension that is randomly chosen from a small set of candidate dimen-

sions with the highest variance. Muja and Lowe [95] identified the two best

algorithms for AKNN querying—randomized k-d trees and hierarchical k-

means trees—and presented an algorithm that selects optimum parameters
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for the algorithms in terms of speed and accuracy criteria. Going one step

further, they successfully extended their work to perform distributed near-

est neighbor search on a cluster of machines [96].

Another body of research adopted partitioning strategies with hyper-

planes not alignedwith axes. Examples include non-axis-alignedhyperplanes [119],

randomprojection trees [39], trinary projection trees [61], ball trees [73], and

several open-source implementations [21, 49, 103, 110].

Hash-based techniquesuse a set of locality-sensitive hashing (LSH) functions [5].

The core idea is that a pair of close points is more likely to fall into the same

bucket after hashing than apair of distant points. Therefore, hash-based tech-

niques can efficiently search for neighbors by looking up the buckets that a

query point falls into. The strength of hash-based techniques stems from the

fact that they can provide a theoretical base on the search quality. Examples

include LSH forest [18], multi-probe LSH [83], kernelized LSH [69], circular

random variable-based matchers [3], and LSH for angular distance [6].

Graph-based techniques model multidimensional data points as a graph

by mapping points to vertices and the neighborhood relationships to edges.

Once the graph is built, AKNN search can be done by exploring the graph.

From aKNNgraph, Sebastian andKimia [112] selected a fewwell-separated

vertices (i.e., seeds) and iteratively moved the seeds to points that are closer

to the query point until satisfactory neighbors were found. Hajebi et al. [55]

provided theoretical guarantees for the accuracy and the computational com-

plexity of such a greedy method. Wang et al. [130] introduced a new ap-

proach to constructing approximate KNN graphs by building exact neigh-

borhood graphs for hierarchically divided data and combining the graphs.

Recently,more sophisticated graph structures, such as navigable small-world

graphs are used for KNN queries. In addition to short-range links in a tradi-
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tional neighbor graph, navigable small-world graphs have long-range links

that connect two distant points. Malkov et al. [87] showed that these long-

range links can be used for logarithmic scaling of neighbor exploration. Later,

Malkov and Yashunin [86] further improved the performance by introduc-

ing hierarchical structures to navigable small-world graphs. Yet, the con-

struction of the graphs is costly and cannot easily be done online.

Throughout a few decades of KNN research, query time (i.e., time taken

to perform a KNN search) has been the key measure for evaluating the per-

formance of various techniques. Indeed, in most studies mentioned in this

section, the authors assumed that data points had already been inserted in

an index and measured the time taken to process queries. This is also the

case with benchmarks in the public domain [10, 93]. However, such bench-

marks are meaningful only when the data is kept constant. In more interac-

tive scenarios, such as interactive analysis by human analysts, the data can be

changed dynamically through user interaction, such as loading a new set of

data or filtering out a subset of data. Thus, it is necessary to keep the whole

process of KNN queries, including building and querying the index, inter-

active. In this chapter, inspired by Progressive Visual Analytics [120], we

introduce a progressive k-d tree for approximate k-nearest neighbor search

that can keep the latency for building, maintaining, and querying the index

within specified time bounds. We chose to start with the multiple random-

ized k-d tree algorithm, which is simple yet one of the most efficient algo-

rithms for AKNN queries [95].
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2.4 t-Distributed Stochastic Neighbor Embedding

t-Distributed Stochastic Neighbor Embedding (t-SNE) [84] is a nonlinear di-

mensionality reduction algorithm that is widely used in data analysis. t-SNE

maps a set of high-dimensional points, x1, x2, ...xN , in a feature space to their

low-dimensional representations (i.e., embedding), y1,y2, ...yN , minimizing

the Kullback-Leibler (KL) divergence [70] between the joint probabilities of

the original points and their low-dimensional representations. The points

are often projected on a 2D space (i.e., dim(yi) = 2) and visualized through

conventional scatterplots or density plots. t-SNE consists of two procedures:

1) computing the k-nearest neighbors of each point in the feature space (i.e.,

neighbor computation) and 2) gradient descent iterations for minimizing the

KL divergence between the joints probabilities (i.e., loss optimization). The

second loss optimization procedure is iterative; for example, intermediate

embeddings of points can be visualized and improved during the iterations.

However, the first procedure, neighbor computation, blocks the whole algo-

rithm and introduces a long delay to the initial result. On amodern desktop,

we found it took about an hour to compute the neighbors of 60,000 points

with 784 dimensions in the MNIST dataset [71] in parallel.

Barnes-Hut Stochastic Neighbor Embedding (BH-SNE) [127] improved

the complexity of the original t-SNE from O(N2) to O(N logN) by applying

the Barnes-Hut approximation [16] to compute the contribution of points in

the loss optimizationprocedure. Pezzotti et al., [106] presentedApproximated-

tSNE (A-tSNE), which visualizes the intermediate results of t-SNE and al-

lows users to steer the t-SNE algorithm by adding, removing, and modify-

ing the results. Recently, Pezzotti et al., [107] further improved t-SNE us-

ing a General-Purpose Graphics Processing Unit (GPGPU), introducing a
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linear complexity loss optimization procedure. These techniques employed

an approximate k-Nearest Neighbor (AKNN) algorithm, such as a forest of

randomized KD-trees [95], to speed up neighbor computation, which is not

progressive and still requires minutes to be initialized.
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Chapter 3

Swi�Tuna: Responsive and
Incremental Visual Exploration of
Large-scale Multidimensional
Data

This chapter 1 illustrates the SwiftTuna system and describes its design con-

siderations as well as implementation details to cover the first research ques-

tion (Vertical Scalability: how dowe enable interactive visual exploration of large-

scale data with scalability in both data processing and visualization?).

Although there have been great advances in visualization and database

technologies, visual analysis of large-scalemultidimensional data is still chal-

lenging. The foremost issue is the long latency of queries, which resulted

from the sheer magnitude of the data. To tackle this issue, researchers in the

InfoVis and database community have attempted to enable low-latency vi-

sual exploration of large-scale data. Through a survey of relevant studies and

1The preliminary version of Chapter 3 was published as a conference paper [62] in the pro-
ceedings of the 10th IEEE Pacific Visualization Symposium (PacificVis 2017).
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visualization systems, we could identify the following four requirements for

visual analytics systems for large-scale multidimensional data and define a

design space for such systems Figure 3.1.

R1. Large-scaleData Processing.The system should be able to process large-

scale data in a scalable manner. It is hard to define what large-scale or

big data means in a concrete number [58]. In addition, even if there is

a concrete definition, it may vary across domains or have to change as

technology advances. However, to make the contribution of our work

clear, we consider one billion entities as the minimum size of large-scale

data. That number is the largest number of entries that have been used to

evaluate interactive systems for large-scale data analytics in information

visualization [76, 79].

R2. Responsive Interaction. It is known that a shorter interaction latency

couldpromote insight generation [78].However, querying on large-scale

data often takes a few minutes or even a few hours, which is too long to

keep users’ attention [99]. To support fluent data exploration without

losing users’ attention on ongoing tasks, the system should respond to

queries in less than 10 seconds.

R3. InteractiveMultidimensional Exploration.Multi-dimensionality is an-

other important aspect of large-scale data exploration becausemost real-

world large-scale datasets have twoormore attributes. The system should

be able to illuminate various aspects of such datasets, enabling users

to explore relationships among multiple dimensions through visual-

ization. By allowing users to generate perceptually effective 1D or 2D

projections of the multidimensional data, users would be able to gain

meaningful insights covering multiple dimensions of the data. This re-
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quirement also includes interaction on multiple dimensions; for exam-

ple, users should be able to delve into a small set of interesting data by

applying filters.

R4. Scalable Visualization. Not all traditional visualization techniques are

applicable to large-scale data analysis. Most traditional visualizations

could suffer from severe overplotting or cluttering problems when ap-

plied to large-scale data. Therefore, visualization designers have to con-

sider the scalability of their visualizationsmore seriously to enable users

to perceive and understand the visualizations of large-scale data.

We found that a holistic approach that satisfies all four requirements is

rare. For example, imMens [79] supports real-time visual querying (R2) and

scalable visualizations and interaction (R4) but lacks the scalability in data

processing (R1) since it stores its data structure in the main memory on a

single machine. Also, imMens only allows filtering on two dimensions (e.g.,

brushing on 2D binned plots) at once, which does not satisfy R3. VisReduce

[59], which may be the most relevant to ours, focuses on fast and responsive

information visualization (R2), but it is not validated in terms of our scala-

bility requirement (R1). Also, it does not support interactive visualizations

for multidimensional data exploration (R3).

In this chapter, we present SwiftTuna, a holistic approach to enable fluent

visual exploration of large-scale multidimensional data. We explore the op-

portunity of incremental data processing for information visualization with

a real-world scale in mind (R1). SwiftTuna does not resort to a prebuilt data

structure (e.g., data cubes) but incrementally processes the raw data in a

distributed manner, enabling users to instantly initiate visual analytics with

their data and request queries that cover multiple dimensions (R3). Our
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work is neither limited to processing large-scale data efficiently for visual-

ization nor to designing visualizations and interaction for scalability. Rather,

our work puts emphasis on designing and developing a holistic visual ana-

lytics system that streamlines the whole process of visual information seek-

ing for large-scale multidimensional data.

SwiftTuna consists of three layers: the data processing layer, visualiza-

tion layer, and querying layer. In the data processing layer on the server side,

SwiftTuna leverages an in-memory cluster computing engine, Apache Spark

[138], to achieve both high scalability and extendibility. For the visualization

layer on the client side, we carefully design a user interface and visualiza-

tions that summarize multiple dimensions of the data in a scalable manner.

The querying layer bridges the client and the server. To support responsive

querying such as filtering on the data, SwiftTuna leverages an incremental

processing approach [46] enables users to grasp immediate but low-fidelity

responses (i.e., prompt responses) as well as delayed but high-fidelity re-

sponses from incremental processing (i.e., incremental responses).

We present the design of SwiftTuna in Section 3.1 and elaborate on re-

sponsive querying on SwiftTuna in Section 3.2. In Section 3.3, we evaluate

our system with a real-world dataset that contains about four billion rows,

and report the result. For continued research, we describe the implementa-

tion of SwiftTuna in Section 3.4.

3.1 The Swi�Tuna Design

In this section, we describe the design considerations behind SwiftTuna and

explain the design of our system.
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3.1.1 Design Considerations

While addressing the four requirements in our design of SwiftTuna, we put

emphasis on two specific goals: scalability and responsiveness. Scalability is

not limited to a server-side architecture for large-scale data processing (R1),

but encompasses multiple scalable visualizations and interactions (R3 and

R4). We also strive to facilitate fluent data exploration by providing respon-

sive feedback (R2). We have iteratively refined our systemwhile performing

design studies on real-world problems with large-scale data in manufactur-

ing and online games following the nine-stage design study methodology

framework [113]. As a result, we present the design considerations as fol-

lows:

DC1. Provide low-fidelity feedback promptly.A delayed response hinders

users from observing the data and generalizing their findings [78]

and causes them to lose their attention [99]. To enable fluid data ex-

ploration, we provide low-fidelity feedback promptly (i.e., prompt re-

sponses) based on a small sample from the data. The main purpose

of prompt low-fidelity feedback is to allow users to visually confirm

their queries early without looking at an empty screen waiting for a

late final response.

DC2. Process results incrementally while estimating the final results. In-

spired by progressive visual analytics [120], we visualize partial re-

sults of analytics and estimate the final results before a query is fully

completed. This enables users to confirm or reject their hypotheses as

early as possible during exploratory analysis and thus test more hy-

potheses with limited time and resources.
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DC3. Enable flexible scheduling.To amplify the use of partial results, Swift-

Tuna provides flexible management of computing resources. For ex-

ample, users can pause or stop queries in real time if they think partial

results are enough for decision-making. Thismakesmore resources on

the server available for processing other queries. Also, users can pri-

oritize a query of interest and examine the result on that query first.

DC4. Support multidimensional data exploration. Multidimensional ex-

ploration can lead users to find new insights acrossmultiple attributes

of the data. SwiftTuna organizes a small multiple in a single view that

showvarious aspects of data in a series of 1D or 2Dprojections. Also, it

supports essential interactions such as brushing, filtering, and details

on demand that are known to be key tools for the information seeking

process.

3.1.2 SystemOverview

SwiftTuna employs a client-server architecture. The client is a single-page

web application where users can create queries, monitor the progress of the

queries in real time, and interact with results to explore data (Figure 3.1).

We will elaborate more on the interface and interaction of the client in the

next section.

To support responsive feedbackwith large-scale data, the server provides

a prompt response (DC1) and processes queries incrementally (DC2).When

a query from the client arrives, the server first returns a prompt response that

contains a low-fidelity result of the query, which is built from a small sample

of the data (DC1). To incrementally process the data, the server separates the

whole data into n blocks, B0 to Bn−1. In turn, the server splits the incoming
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Figure 3.1: Interface of Swi�Tuna. An analyst is exploring a multidimensional dataset
with 100 million entities. Visualization cards (two expanded cards and six thumbnail
cards) on the right side provide a univariate summary on a single dimension or visual-
ize the relationship between two dimensions.

query into n jobs, with each job corresponding to each data block. These

jobs are inserted into a job queue. The server takes the first job, which covers

B0, from the queue and runs the job on backend workers. Thereafter, the

server polls the workers every 200 ms to check whether the job is done. Once

completed, the server gathers the result from the workers and sends it back

to the client. The remaining jobs in the queue (i.e., n − 1 jobs that cover B1

to Bn−1) are processed one by one in the same way.

From the client’s point of view, a series of staggered responses arrives for

a single query. The client accumulates and combines partial results. For ex-

ample, suppose there is a query that calculates a frequency histogram of a

categorical dimension, nat_cd, which represents the codes of nationalities.

The first partial response only contains the frequency of countries in B0.
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When the second result arrives, which covers B1, the client accumulates the

frequency by comparing country names. Then, the client updates progress

bars and the corresponding visualization.

SwiftTuna currently supports four visualization-related queries, Frequency

Histogram, Binned Histogram, Pivot Dot Plot, and Density Plot, as well as

two data-related queries, Count and Load Raw Data. We chose the four vi-

sualizations following the concept of binned plots [79], which are known to

convey global patterns and outliers well despite the size of the data. A visu-

alization is shown in a visualization card (Figure 3.4) that serves as a basic

unit of analysis. Frequency histograms (Figure 3.2a) and binned histograms

(Figure 3.2c) provide a univariate summary on a categorical or numerical

dimension, respectively. On the other hand, pivot dot plots (Figure 3.3b)

and density plots (Figure 3.3c) are appropriate for visualizing a relationship

between two dimensions. Pivot dot plots aggregate a numerical dimension

with designated aggregation function (MIN,MEAN,MAX, or SUM), group-

ing rows by a categorical dimension. Density plots visualize the relationship

of two numerical dimensions.

Since SwiftTuna separates the data into blocks and processes each block

one by one, only partial results are available in the middle of the process. To

allow users to quickly access the results, we estimate the final results from

the partial results based on known statistical procedures (DC2). For exam-

ple, since the partial results are from a sample of the population, we estimate

population statistics using sample statistics (e.g., using the samplemean and

the sample standard deviation to estimate the population mean). Exception-

ally, we decided not to estimate the final results of pivot dot plots that use

MIN or MAX aggregation because those statistics are quite sensitive to out-

liers and thus cannot be estimated robustly.
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Figure 3.2: Tailed charts and dot plots. (a) Tailed gradient plots prioritize prominent
categories (e.g., themost frequent five categories) by visualizing them in half of the visual
space, while the rest of the categories are outlined in another half of the spacewith a line
(i.e., a tail). Gradients show the95%confidence intervals of estimated values. (b)Whenall
data are processed, the gradients eventually converge, and tailed dot plots replace tailed
gradient plots. (c) Gradient plots. (d) Dot plots.

Figure 3.3: Expanded visualization cards. (a) An expanded gradient plot (expanded
fromFigure 3.4c). (b) Anexpanded tailed gradient plot. (c) Anexpandeddensity plot. Den-
sity plots donot provide the context view for brushing, but users candirectly brushon the
focus view.

3.1.3 Scalable Visualization Components

To enable visual analytics on large-scale data, it is necessary to visualize re-

sults in a scalable way (R4). We present a novel visualization, tailed charts

(Figure 3.2a and Figure 3.2b), as well as improving previous visualization

methods [79]with effective interaction techniques such asOverview+Detail [29].

In this section, we describe scalable visualization components of SwiftTuna

in detail for each query type (Table 3.1).
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Binned Histograms. A binned histogram shows a univariate summary

of a numerical dimension (Figure 3.2c and Figure 3.2d). SwiftTuna creates

40 bins by default, and calculates the number of rows that fall into each

bin. We heuristically chose to use 40 bins, striking a balance between per-

formance and the flexibility in resizing bins without querying the server.

The 40 bins are aggregated into eight bins and visualized through a dot plot

(Figure 3.2d).

FrequencyHistograms andPivotDot Plots.A frequency histogram shows

the distribution of categories in a categorical dimension, while a pivot dot

plot visualizes aggregate values of a numerical dimension (e.g., mean) over

a categorical dimension. Both visualizations are different from binned his-

tograms in that the values on the x-axis are categorical and thus cannot be

aggregated. Therefore, the x-axis often becomes crowded as the number of

categories increases, which is a frequent situation in large-scale data analy-

sis. As a remedy, we design a novel visualization, tailed charts (Figure 3.2a

and Figure 3.2b). Tailed charts prioritize prominent categories (e.g., themost

frequent five categories) by visualizing them with salient visual elements in

half of visual space, while the rest of the categories are outlined in another

half of the space with a line (i.e., a tail). We designed two variants of tailed

charts: tailed gradient plots (Figure 3.2a) and tailed dot plots (Figure 3.2b),

to summarize a large number of categories on the x-axis. We believe tailed

charts allow users to identify the most prominent values effectively as well

as understand the overall distribution of all data.

Density Plots.Adensity plot shows the relationship between twonumer-

ical dimensions (Figure 3.3c).We create 1,600 bins (40 bins for each axis) and

count the number of rows for each bin. We ensure the minimum opacity of a

bin to 0.5 if the bin has at least one row, as in a previous work [66]. The cen-
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ter points of bins are color-coded by a univariate or bivariate color scheme.

Bilinear interpolation is used to color-code pixels between the center points.

Visualizing Uncertainty. Since SwiftTuna processes queries incremen-

tally and estimates the final results through statistical procedures, it is es-

sential to maintain graphical integrity by revealing the errors of estimated

values. One possible approach is to overlay traditional whisker-based error

bars on visualizations. However, recent studies revealed that the traditional

error bars suffer from perceptual issues [35, 48]. Thus, we adopt an alter-

native, the gradient plots [35], as a primary visual component for encoding

errors, which are proven to be perceptually more robust.

When queries are initially issued, gradient plots (Figure 3.2c) and tailed

gradient plots (Figure 3.2a) visualize low-fidelity results, showing 95% con-

fidence intervals. As in a previous work [35], a 95% confidence interval is

filled fully opaquely, and the opacity decreases following the inverse cumu-

lative probability function. As more blocks are processed and the amount of

error decreases, the gradients shrink vertically. When all data are processed,

the gradients eventually converge to look like thin horizontal bars. Finally,

they disappear, and the gradient plot is replacedwith a dot plot (Figure 3.2d)

or a tailed dot plot (Figure 3.2b) according to the number of values on the

x-axis. We choose to use dots instead of bars because they are as effective as

bars and more consistent with gradient plots in that both dot plots and gra-

dient plots use position encoding. Although we do not estimate the results

for MIN and MAX aggregation, we opt to show a one-sided gradient with a

fixed height, indicating the results are incomplete.

To visualize errors of tails in the tailed charts, we opt to connect and fill

95% confidence intervals of categories without using gradients. Since the
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Figure 3.4: A visualization card showing the sum of a numerical dimension (age) over a
categorical dimension (nat_cd).

width of each gradient often becomes less than one pixel, the filled area is

clearer to read than gradients.

3.1.4 Visualization Cards

A visualization card is a small zoomable widget that serves as a basic unit

of analysis (Figure 3.4). The main purpose of the visualization card is to

help users manage queries in a visual form and explore results interactively

(DC4). A visualization card corresponds to one query. The title of a card

describes its query in a short string format. Below the title, the result of the

query is visualized. On the top edge of the card, a progress bar shows the

current progress of the query. Users can hover the mouse cursor over the

progress bar to check the number of rows that have already been processed,

are being processed, and will be processed.

As shown in Figure 3.4 and Figure 3.2, a visualization card is initially in a

thumbnail mode, showing the result and progress of its query in a compact

view. Users can expand a card to see details and interact with it in a larger

view by clicking on the checkbox on the top-right corner (Figure 3.3a).When
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a card is expanded (i.e., an expanded mode), the visualization is split into

two sub views, a focus view and a context view, and a control panel appears

below the context view.

All bins (for binned histograms) or categories (for frequency histograms

or pivot dot plots) are shown in the context view. Users can brush on the

context view to examine the details of the brushed area in the focus view. If

at least 20 pixels in width cannot be allocated to each category because of the

large number of categories or a short screenwidth, we use a line and connect

the confidence intervals over categories instead of dots and gradients, as in

tails of tailed charts (Figure 3.3b). For the density plots, we do not provide

the context view because it is certain that the number of bins on the x-axis is

not toomany (i.e., 40 bins for each axis). Instead, users can create a 2D brush

directly on the focus view.

Users can also fine-tune the visualization of a card in the control panel.

The possible options varydepending onquery types such as options to switch

between a linear scale and a log scale on the y-axis or a color scheme (for

all cards), change the number of bins (up to 40, for binned histograms), sort

the x-axis alphabetically or by value (for frequency histograms and pivot dot

plots), and clear a brush (for all cards). Users can regard a numerical but dis-

crete dimension as either categorical or numerical dimension. For example,

suppose there is a numerical dimension, age, given in integer. If age remains

numerical, a binned histogram visualizes the distribution of age. Otherwise,

if age is considered as a categorical dimension, a frequency histogram shows

the occurrence of an individual age value. For density plots, users can switch

a color-coding scheme from a univariate one to a bivariate one to spot low-

density regions in a salient color that can be a clue to outliers. Note that all
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interactions in a control panel are handled by the client without querying

the server, preventing users from waiting longer.

3.1.5 User Interface and Interaction

Figure 3.5: Card list panel. (a) The card list shows the list of visualization cards. (b) The
progress list illustrates the progress of each card with a progress bar. Users can stop or
resume processing the query of a card by clicking on stop and play icons, respectively.
(c) Users can prioritize queries with two options: block order and list order. We elaborate
on scheduling in Section 3.2. (d) Each time users brush on a visualization, a filter that
represents the brushed area is added to the filter list. Users can click on a funnel icon to
activate the filter. (e) Users can create a new card for two dimensions (e.g., for a density
plots between two numerical dimensions) by clicking on a plus icon at the bottom of the
card list.

As shown in Figure 3.1, SwiftTuna’s interfacemainly consists of two com-

ponents, the card list panel on the left side, and the main workspace on the
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right side. We decided to create initial visualization cards (a visualization

card corresponds to a single query) for every dimension in data as a starting

point for users’ exploratory analysis. Users can create, remove, or prioritize

the visualization cards in the card list panel while they can interact further

with them in the main workspace. The card list panel supports multidimen-

sional data exploration (DC4). Users canmanage visualization cards in a list

form, schedule queries, and apply filters (DC3).

CardList.At the top of the card list panel, all visualization cards are listed

with icons that abstract queries (Figure 3.5a). Users can hide a visualization

card that is out of interest by toggling an eye icon next to its name. Hidden

cards are excluded from querying, reducing the workload of the server. To

create cards for conjunctive visualizations such as pivot dot plots and density

plots, users can click on a plus icon at the bottom of the card list and specify

two dimensions in an appeared widget (Figure 3.5e).

Progress List.Users can interactively manage the processing order of vi-

sualization cards in the progress list (DC3, Figure 3.5b). The progress list

shows a priority list of cards and users can reorder it through drag-and-drop

interaction. When they decide that the query of a visualization card is pro-

cessed enough (e.g., if the confidence intervals are narrow enough), they can

stop processing the query by clicking on a pause icon. These features allow

users to flexibly schedule the job queue of the server.

Filter List. Users can explore a subset of data by applying filters. A filter

has a condition defined by either a range (e.g., [20, 30] for a numerical dimen-

sion age) or a list of categories (e.g., {KR, JP} for a categorical dimension

nat_cd). They can create a filter by brushing on a visualization card. Then,

the filter is added to the filter list, displaying its condition (Figure 3.5d).

When users activate a filter by clicking on the funnel icon next to its con-
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dition, all cards visualize only rows that satisfy the condition of the filter.

SwiftTuna supports conjunctive filtering (i.e., combination of multiple fil-

ters). Since SwiftTuna does not build precomputed data structures for a de-

termined set of dimensions as in data cubes, users can apply multiple filters

on every dimension in data simultaneously. Formore detailed analysis, users

can inspect the filtered raw data in a paged list by opening a data viewer (the

bottommost button in Figure 3.5d).

MainWorkspace.Themainworkspace allowsusers to examine expanded

visualization cards in detail while keeping other cards accessible through

horizontal scrolling (DC4, Figure 3.1). The main workspace presents visual-

ization cards that are not hidden in the card list panel (Figure 3.5a). Initially,

all cards are in a thumbnail mode, positioned in a grid-like view with four

cards in a row. When users expand some of cards, the expanded cards are

horizontally arranged in the upper part of the main workspace, and remain-

ing cards shrink and move to the bottom part of the workspace.

3.2 Responsive Querying

Inspired by Fisher’s workflow for incremental visualization system [46], we

adopt the incremental querying approach to achieve responsive querying for

visualization-related queries for each type of visualizations (i.e., frequency

histograms, binned histograms, pivot dot plots, and density plots).

3.2.1 Querying Pipeline

When visualization cards need to be updated (e.g., users activated a filter or

added a new card), the client requests queries with each query correspond-

ing to each card. For example, if users apply a filter on data, all visible vi-
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Figure 3.6: Massive parallel processing in Swi�Tuna. Swi�Tuna separates raw data to
nblocks (i.e.,B0 toBn−1), andprocesses eachblock in aparallel anddistributedmanner.

sualization cards should be updated; therefore, the client requests as many

queries as the visible cards.

To understand the querying pipeline of SwiftTuna, suppose that an ana-

lyst issued two queries, Q1 for a frequency histogram of a categorical dimen-

sion nat_cd and Q2 for a binned histogram of a numerical dimension age.

When the queries arrive at the server, each query is split into n jobs where n

is a tunable number of blocks. To alleviate a possible bias in raw data, a pro-

cessing index (from 0 to n− 1) is randomly assigned to each block without

duplication, and blocks are processed in this random order. We denote a job

as J(Qi, Bj) for a query Qi and a block Bj where i is the index of a query

and Bj is the j-th (0 ≤ j < n) block in the random processing order. In the

above scenario, if the number of blocks, or n, is 10, 20 jobs are created from

the queries: J(Qi, Bj)where i = 1, 2 and 0 ≤ j < 10.

Then, the created jobs are inserted into a job queue in a certain order.

SwiftTuna supports two scheduling modes: block order and list order. The

default block order prioritizes blocks over queries. In this order, the server
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executes jobs with smaller processing indices first. For example, after finish-

ing the first job, J(Q1, B0), the server runs J(Q2, B0) rather than J(Q1, B1).

The block order is useful when obtaining early results of all queries. In con-

trast, the list order prioritizes queries over blocks, meaning that the server

completes all jobs related to the first query and moves to the next query. For

example, in the list order, J(Q1, B1) is executed after J(Q1, B0). Users can

switch the scheduling mode and reorder the priority of queries in the card

list panel (Figure 3.5c).

Whenusers apply filters, two additional procedures occur. First, the server

represents the filters using SQL syntax and appends it to all jobs as an ar-

gument. This allows workers to filter out the data. Second, a counting job,

which counts the number of rows that satisfy the filters, is prepended to the

job queue. The result of the counting job is sent to the client and used to

display the number of filtered rows.

Basically, the server takes a job, J(Qi, Bj), from the job queue and runs

it on the cluster. Here, since we have a single job and multiple workers, we

need to split the job again into tasks to leverage the parallel processing of

Apache Spark. The server separates block Bj into a designated number of

sub blocks (e.g., the number of workers in the cluster), and creates tasks

with each task corresponding to each sub block. Then, the workers run the

tasks in parallel (Figure 3.6). The server gathers the results from the workers

and sends them back to the client as an incremental response for the query

Qi. Note that at this time, the client has incremental responses for the query

Qi on the blocks B0 to Bj . If the query is not completed (i.e., j < n− 1), the

client visualizes the responseswith error indicators (e.g., gradient plots) and

shows incomplete progress bars.
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3.2.2 Prompt Responses

As the importance of a quick response has been advocated in a previous

study [48], SwiftTuna provides prompt responses to enable users to visu-

ally confirm queries in a very early stage of analysis. Prompt responses for

queries are built from a small sample of the entire data stored on the server

without passing the queries over to workers. This feature allows the server

to react to the queries almost instantly, helping users to focus their atten-

tion on analysis. When two or more queries are requested, the server packs

all prompt responses for the queries and transfers the packed result back at

once, reducing the network overhead.

When the client receives a prompt response for a query, it shows initial

visualizations based on the prompt response. After a few seconds, when

the first incremental response for the query arrives at the client, the client

discards the prompt response and replaces it with the first incremental re-

sponse. This is becausewhen the query uses binning (e.g., binnedhistograms),

it is impossible tomerge the two responses (i.e., the prompt response and the

first incremental response) due to the different sizes and ranges of the bins.

3.2.3 Incremental Processing

Although the first incremental response replaces a prompt response, the

client accumulates the remaining incremental responses and estimates the

final results. The detailed procedures vary depending on the query type. In

this section, we explain the accumulative estimation per query type.

For count queries such as frequency histograms, the accumulation proce-

dure is straightforward. Given two incremental responses, we compare the

frequency of each category and add up two frequencies if the same cate-

gory exists in both responses. For the estimation, since we already know the
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number of all rows in the data, we approximate the final results and its 95%

confidence intervals [80].

Binned histograms and density plots are similar to frequency histograms

in that they count the number of rows. However, to accumulate incremen-

tal responses for those queries, the sizes and ranges of the bins used in the

responses have to be chosen before processing. We could use a fixed range

for each numerical dimension, but we found that using a fixed range often

yielded unsatisfactory binning results especially when a number of rows in

data were filtered out. As a remedy, SwiftTuna adds an additional job, a

range job, before processing those queries, which calculates the minimum

and maximum values of a numerical dimension only with remaining rows

after filtering. Then, the size and ranges of bins are determined by uniformly

dividing the interval between the minimum and maximum values of the di-

mension. The estimation step is the same as that of the frequency histogram

query since they are all count estimates.

Accumulating responses for pivot dot plots is a bit different. Pivot dot

plots aggregate a numerical dimension over a categorical dimension. Cur-

rently, four aggregation functions are supported: MIN, MAX, MEAN, and

SUM. Merging two incremental responses for MIN and MAX functions is

straightforward. For a category in both responses, we compare two MIN (or

MAX) values in the responses and choose the smaller (or larger) one ac-

cording to the aggregation function. As mentioned before, we decided not

to estimate the final MIN and MAX values because they are quite sensitive

to outliers.

For MEAN and SUM functions, the server provides three values for each

category in incremental responses: the frequency of the category, the sum

of a specific numerical dimension, and the squared sum of the dimension.
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When a SUM function is chosen, the second value (i.e., sum) is directly visu-

alized. Otherwise, for a MEAN function, we calculate the mean by dividing

the second value (i.e., sum) by the first value (i.e., the frequency of a cat-

egory). The squared sum is used to calculate variance and 95% confidence

intervals for mean and sum estimates.

3.3 Evaluation: Performance Benchmark

To evaluate our system in terms of scalability and responsiveness, we con-

ducted performance benchmarks using a real-world dataset.

3.3.1 Study Design

Since we could not find a distributed and incremental visualization system

that is publicly available, we evaluated the feasibility and performance of

our system with a real-world large-scale dataset. We supposed a practical

scenariowhere an analyst remotely queries the datawith a laptop in an office.

Cluster. A cluster was hosted on a cloud computing environment, Ama-

zonElastic ComputeCloud (EC2).We created 16 spot instances of the r3.8xlarge

tier,whichwas optimized formemory-intensive application, in the ap-northeast-

1 region (Tokyo). Each instance was equipped with Intel E5-2670 v2 (32 vC-

PUs), 244 GB of main memory, and two 320 GB SSD storages. To organize a

computing cluster, we used Hadoop 2.4.0 and Apache Spark 1.6.0 in a stan-

dalone mode. Among 16 instances, one served as a master and the remain-

ing 15 instances acted as workers. All instances ran on Amazon Linux AMI

2013.03.

Dataset. We used Criteo’s Terabyte Click Logs dataset [37], which con-

tained sampled click feedback of online advertisings (ads) for 24 days. The

dataset was 1.03TB in a tab-separated format and had 4.3B entries with 40 di-
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mensions. The 40 dimensions consisted of a binary dimension, 13 numerical

dimensions, and 26 categorical dimensions. We excluded the binary dimen-

sion from benchmarks because it had only two different values. Since the

dataset was all anonymized, we named the numerical dimensions as N0 to

N12, and the categorical dimensions as C0 to C25. We filled all missing val-

ues with an integer 0 (for numerical dimensions) and a string “empty” (for

categorical dimensions).

We considered the number of blocks (i.e., the separated pieces of data for

incremental processing), n, as an independent factor and tested our system

under two different values of n: 240 and 2,400 blocks. Since the raw data was

provided in 24 similar-sized chunks (one chunk for one day), we divided

each chunk into 10 or 100 blocks. All blocks were represented in a columnar

format (i.e., Parquet [37]) and stored in the distributed file system of the

cluster. During the benchmarks, the blocks were loaded in themainmemory

of the cluster, enabling in-memory calculation. For prompt responses, we

randomly sampled 0.001% of data (about 10MB, 0.001% of 1.03TB), and kept

the sample on the master of the cluster.

Client. The clientwas a 15-inch 2015MidMac Book Pro (OSX 10.11.3; 2.8

GHz Intel Core i7 CPUwith 16 GB of main memory). The client was located

in Seoul, Korea, and connected to the Internet through Wi-Fi. The client ran

a web browser (Google Chrome 49.0.2623.87) and connected to the server.

We injected additional codes into the client to make it automatically request

queries, and record timestamps each time a response was returned.

Query.We chose four numerical dimensions (N6, N5, N3, and N11) and

four categorical dimensions (C25, C7, C3, and C4) that had various ranges

and cardinalities. Using those dimensions, we tested 14 queries that con-

sisted of four binned histograms (Q1 – Q4), two density plots (Q5 and Q6),
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four frequency histograms (Q7 – Q10), and four pivot dot plots (Q11 – Q14)

(Tables 2 and 3).

Measurement. We mainly focused on measuring the perceptual latency

of our system rather than using system performance metrics. We measured

1) the range or cardinality of related dimensions, 2) the latency of prompt

responses (the time from when users requested a query to when the first

feedback on the query was shown), and 3) the mean interval between two

successive incremental responses. Since we supposed an analyst accesses a

large dataset remotely throughWi-Fi, additional delays could be included in

the measurement, such as network latency resulting from the wireless con-

nection, or the distance between Seoul and Tokyo, which we believe to bet-

ter reproduce real-use cases. We repeated each query at least 40 times (100

times for prompt responses and measurements with 2,400 blocks, 40 times

for measurements with 240 blocks). For all time measurements, we calcu-

lated 5% trimmed mean, which discarded 5% of measures from the highest

and lowest, respectively.

Range Approximation. For the binned histograms (Q1 – Q4) and den-

sity plots (Q5 and Q6), the ranges of bins (40 bins for the binned histograms

and 1,600 bins for the density plots) should be determined before actually

counting the number of rows for each bin. As explained in Section 3.2.3, we

prepended an additional job, range job, into a job queue that calculates the

minimum and maximum values of a given dimension for the entire data.

However, in our preliminary benchmark, we found that such additional jobs

took a few minutes, hurting the responsiveness of the system. Therefore, we

decided to calculate the range of a dimension only using the first block, not

using the entire data. Since the ranges of bins were approximated only us-

ing the first block, some outlying values that were out of the approximated
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ranges can be found while processing the remaining blocks. We made such

values fall into one of the two extreme bins (i.e., the first bin that had the

minimum value, and the last bin that had the maximum value) and counted

the number of such rows as shown in Table 3.2 (Out of Range).

3.3.2 Results and Discussion

The results for binned histograms and density plots are shown in Table 3.2.

For the measurements that were affected by the number of blocks (n), we

presented two numbers in a single cell: the number out of parentheses was

measuredwhennwas 2,400,while the number in parentheseswasmeasured

when nwas 240.

On average, users were able to receive a prompt response within 0.5 sec-

onds regardless of the range of a queried dimension and the type of the

query.Whendatawere split into 2,400 blocks (i.e.,n=2,400), a block covered

approximately 1.75 million rows. About two seconds were required to either

calculate the range of a dimension on the first block (to determine the range

of bins) or build a binned histogram for one block. This means that users

could grasp the first incremental response on 1.75 million rows in four sec-

onds after receiving prompt responses, and the next incremental responses

followed every two seconds.

With respect to the granularity of a block, a smaller-size block (n=2,400)

yielded faster responses.However, a bigger-size blockwas preferred in terms

of throughput. For example, when n was 2,400, 1.78 seconds were taken to

sweep 1.75 million rows in a block and create a binned histogram for N6

(Q1). However, it took only two times longer (3.52 seconds) to process ten

times more rows (17.5 million rows) when nwas 240. This implies there was
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an overhead that cannot be efficiently parallelized, such as network latency

or the time taken for communication between nodes.

We approximated the minimum and maximum values of a dimension

only using the first block, not processing the entire data, to rapidly determine

the ranges of bins. Only a few thousand values were out of the approximated

range; however, it is quite a small number compared to the size of the entire

data (4.2 billions). This means that the dimension range estimation only us-

ing the first block is sufficiently effective in the exploration of large-scale data.

It would be also useful if the system highlighted those out-of-range values.

For example, binned histograms and density plots can be improved to show

those values with visual cues on boundaries of visualization. We leave this

improvement to future work.

In Table 3.3, we presented the results of frequency histograms and pivot

dot plots.Overall, comparedwith binnedhistograms anddensity plots, slightly

longer intervals were required for each incremental response. As the car-

dinality of a categorical dimension increased, it took longer to create a fre-

quency histogram of the dimension (in the order from Q7 to Q10). This can

result from either the additional number of keys that should be shuffled be-

tween workers, or the longer network transmission time due to a longer list

of frequencies. The mean interval between incremental responses was not

significantly affected by whether an aggregation function was applied (Q7

vs. Q11) or the type of an aggregation function (Q11 vs. Q12).

Through our benchmarks, we found practical evidence that SwiftTuna

could support fluent and incremental data exploration of large-scale multi-

dimensional data. To allow users to begin data exploration immediately, we

may precompute univariate histograms (i.e., a binned histogram or a fre-

quency histogram for every dimension) only for the initial screen.
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3.4 Implementation

The clientwaswritten in JavaScriptwith open-source libraries such asD3.js [24],

Angular.js, and Bootstrap. The client connected to the server via WebSocket

to receive incremental responses and progresses in real time. For the server,

we created a computing cluster on Amazon Elastic Compute Cloud (EC2).

The number and type of instances and the versions of installed softwarewere

described in Section 3.3. One instance served as a master and performed two

important roles: supervising workers in the cluster as a master and running

a web server to which the client connected. The web server was written in

Python 2.7 upon a micro web framework, Flask. When users requested a

query to the web server, the web server chose an appropriate program (i.e.,

a driver program) according to the query type, and ran the program on the

cluster. We implemented various driver programs, with each corresponding

to each query type (e.g., one for binned histograms and another for pivot dot

plots). The driver programs were implemented in Scala 2.10.4 using Spark-

SQL API.

3.5 Summary

This chapter proposes an interactive data exploration system, SwiftTuna,which

enables fluent information seeking process on large-scale multidimensional

data. SwiftTuna enables large-scale processing by exploiting an in-memory

computing engine, Apache Spark, which allowed fast and scalable data pro-

cessing as demonstrated in our benchmarks. To provide the responsive feed-

back for interaction, SwiftTuna processes queries incrementally while pro-

viding prompt responses using a small sample, delivering immediate and

continual feedback. To achieve scalable visualization, interaction techniques
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(e.g., Focus+Context) were integrated into visualizations that are appropri-

ate for large-scale data (e.g., density plots). The design of two variants of

tailed charts (i.e., tailed dot plots and tailed gradient plots) can improve

crowded x-axes in frequency histograms. Since SwiftTuna does not resort to

a preprocessing scheme (e.g., data cubes), it lends itself to multidimensional

exploration through filters on multiple dimensions.
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Chapter 4

PANENE: A Progressive Algorithm
for Indexing and Querying
Approximate k-Nearest
Neighbors

This chapter 1 presents a novel progressive algorithm, PANENE, for Pro-

gressive Approximate k-NEarest NEighbors, answering the second research

question (Horizontal Scalability: how do we responsively embed and visualize

high-dimensional data on a 2D space without long initial computation delays?).

Progressive data analysis has recently gained in popularity due to its abil-

ity to deliver ongoing results before thewhole computation is completed [45,

120]. However, despite the advantages, it is not always simple or even pos-

sible to convert a sequential algorithm directly to a progressive one. Such a

hurdle hinders the applicability of progressive computation to awider range

of data analyses. In this chapter, we address one important problem: pro-

1The preliminary version of Chapter 4 was published as a journal article [65] in IEEE Transac-
tions on Visualization and Computer Graphics (TVCG) followed by a workshop paper [64].
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gressively finding k-nearest neighbors of a given point in amultidimensional

space, i.e., the k-nearest neighbor problem. In contrast to sequential or online

algorithms that have been proposed, PANENE is progressive; it guarantees to

finish its operations in a given number of cycles and thus does not block the

whole system when loading or processing data continuously. It allows us

to bring useful machine learning methods, such as t-SNE [84], into visual

analytics, which has been limited due to their long computation time.

The k-nearest neighbor (KNN) problem is an optimization problem of

finding the k closest points to a query point in a multidimensional metric

space. Formally, given N points P = {p1, · · · , pN}, pi ∈ RD, and a query

point q ∈ RD, a KNN search finds the k-nearest points of q in P . Formally,

this operation can be stated as follows:

KNNk(q) 7→ {i1, i2, · · · ik}, where ij ∈ [1, N ]

KNNk(q) is a set of indices that satisfy the following condition:

∀i ∈ KNNk(q) ∀j ∈ [1, N ]− KNNk(q), ‖q, pi‖ ≤ ‖q, pj‖,

where ‖q, p‖ is the distance between q and p. The KNN problem is a build-

ing block of many data mining and visualization methods, such as cluster-

ing [122], classification [103], embedding [106], and non-parametric density

estimation [51]. Thus, designing an efficient progressive algorithm for the

KNN problem is an important step towards extending the applicability of

progressive computation.

One straightforward approach is to calculate the distances from a query

point q to every point in the dataset and take the k closest. However, this

method is inefficient, since it has to iterate over all points and thus has time

complexity of θ(N). A more efficient approach is to use a search data struc-
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ture or an indexing method such as a k-d tree, which usually reduces the

time complexity to a logarithmic scale.

In recent years, there have been important advances in data structures

and algorithms to speed up KNN queries. These advances have mostly fo-

cused on optimizing the query time, considering that the indexing was done

once for all data points and thus the indexing time was less important than

the query time [10]. However, for progressive systems, both times are impor-

tant because data can be loaded progressively, the KNN queries can be done

progressively, and therefore the index should be updated progressively as

well.

A popular approach to improve the query time is to compute approxi-

mate k-nearest neighbors instead of exact ones.Approximate k-nearest neigh-

bor search (AKNN) techniques are more efficient than exact KNN, but all of

them also require building an index. For example, the most efficient method

to date, the hierarchical navigable small-world graph (HNSW) [86], needs

all data points to be loaded upfront and a special graph structure to be built

before querying. From the visual analytics point of view, such a precompu-

tation leads to long loading time, hampering the interactivity of the entire

system. Only few AKNN techniques, such as FLANN [96], support online

updates; they allow inserting new points even after an index is built. How-

ever, this is not sufficient for visual analytics because the insertion time is not

bounded. Indeed, we observed that FLANN pauses longer than 10 seconds

to update its index with a few hundred thousand points, exceeding the time

limit to keep the user’s attention [99].

In this chapter, we present a progressive algorithm for indexing and query-

ing approximate k-nearest neighbors.Our algorithmcomputes k-nearest neigh-
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bors iteratively with each iteration finishing in a given number of operations

(i.e., progressively). The contributions of this chapter are

• a progressive k-d tree data structure that can sustain a controlled la-

tency while it is created, updated, and queried;

• an algorithm for building and updating a lookup data structure that

we call a KNN lookup table, which enables constant-time lookups for

KNN queries; and

• progressive applications of PANENE, including regression, density es-

timation, and responsive t-SNE [84].

This chapter is organized as follows: we first review previous approaches

to the KNN problem and discuss new challenges and requirements in inter-

active visualization systems. In Section 4.1, we show how we improve the

sequential k-d tree algorithm to become first online and then progressive,

which is the first contribution of PANENE. In Section 4.2, we elaborate on

the second contribution of PANENE: KNN lookup tables, meant to speed up

repeated KNNqueries. In the following two sections, we evaluate the perfor-

mance of PANENE through benchmarks (Section 4.3) and present applica-

tions in interactive analysis (Section 4.4). Finally, we discuss the limitations

of this work and future work.

4.1 Approximate k-Nearest Neighbor

In this section, we first describe a sequential algorithm using randomized

k-d trees for approximate k-nearest neighbor (AKNN) search, and then im-

prove it, to become first online and then progressive. Among many algo-

rithms mentioned in the related work section, we chose to improve a k-d

tree because 1) it is known to be efficient and yet easy to implement [95] and
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2) an online version of the algorithm is available as open-source [49], so we

could directly compare our progressive version to the online version.

4.1.1 A Sequential Algorithm

A k-d tree is a binary tree built by recursively partitioning a multidimen-

sional space using axis-alignedhyperplanes [20] andused thereafter to search,

guaranteeing O(logN) search time and O(N logN) build time. At the root

node, the algorithm chooses a cutting dimension that has the largest vari-

ance and assigns points to child nodes: The points whose values on the cut-

ting dimension are less than the median are assigned to the left child, and

the remaining points are assigned to the right child. This procedure repeats

until only one point remains in a node. In the randomized k-d tree forest,

we randomly choose a cutting dimension among the top n dimensions with

the largest variance, typically, n = 5 (see Algorithm 1). This allows building

multiple randomized trees for the same data and representing neighborhood

in high-dimensional spaces more effectively.

Algorithm 1 has three strong limitations: First, it requires all the points in

L to be already loaded inmainmemory before it can build the randomized k-

d trees. Such a constraint forces analysts towait until all data is read fromdisk

or database before performing any analysis. Second, once the data structures

are built, the algorithm does not allow any modification, such as inserting

new points or removing points. Finally, the running time of the algorithm

solely depends on the size of input (i.e., l), and thus its latency cannot be

controlled.
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Algorithm 1 A sequential algorithm for recursively building a randomized
k-d tree of the given l points in L
1: procedure BUILDSEQUENTIAL(L)

Input: L is a list of l points ofD dimensions.
Output: The root node of a randomized k-d tree
2: if L has only one point then
3: node← a new leaf node
4: node.point← L[0]

5: return node
6: end if
7:
8: node← a new internal node
9: calculate the variance of each dimension in L
10: node.cutdim← a random dimension with large variance
11: node.cutval← median([p[node.cutdim] for p in L])
12:
13: le�← [p for p in L if p[node.cutdim] ≤ node.cutval]
14: right← [p for p in L if p[node.cutdim] > node.cutval]

15:
16: node.le�← BUILDSEQUENTIAL(le�)
17: node.right← BUILDSEQUENTIAL(right)
18: return node
19: end procedure

4.1.2 An Online Algorithm

In contrast to a sequential algorithm, an online algorithm allows adding new

points to the trees even after they are built. This benefits interactive systems

in that analysts do not have to wait until all data is loaded. Rather, the data is

split into batches, loaded onto the system incrementally, and can be used for

further online algorithms. Analysts can access the running result between

the batches, obtaining improved approximations of the final results.

However,we only foundone implementation of onlineAKNN: the FLANN

library [96]. It can build an initial k-d tree of the points in the first batch using

Algorithm 1, and other points can be added into the tree thereafter.
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The insertion procedure of the FLANN library is very akin to that of a

binary tree: Starting from the root node, each point moves to either the left

or the right child of an internal node by comparing its value at the dimension

chosen to split the values at that node—called the cutdim—against the me-

dian value computed initially for that node—the cutval— until it reaches a

leaf node. Then, the leaf node becomes an internal node, and the two points

(i.e., the point being inserted and the point of the leaf node) become the chil-

dren of the former leaf node. Algorithm 2 describes the insertion procedure

in more details.
Algorithm 2An algorithm for inserting a new point p into a randomized k-d
tree with a root node node
1: procedure INSERTPOINT(node, p)

Input: node is the root of a k-d tree
Input: p is a newD-dimensional point
Output: p is inserted as one of the leaf nodes in the tree
2: if node is a leaf node then
3: mark node as an internal node.
4: calculate the absolute di�erence between p and node.point at each dimension
5: choose a cutdim dimension with the largest di�erence
6: cutval← (p[cutdim] + node.point[cutdim])/2

7: if p[cutdim] ≤ cutval then
8: node.le�← a new leaf containing p
9: node.right← a new leaf containing node.point
10: else
11: node.le�← a new leaf containing node.point
12: node.right← a new leaf containing p
13: end if
14: return
15: end if
16:
17: if p[node.cutdim] ≤ node.cutval then
18: INSERTPOINT(node.le�, p)
19: else
20: INSERTPOINT(node.right, p)
21: end if
22: end procedure
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As more points are inserted into a k-d tree, it can become unbalanced,

lengthening the query time. In the FLANN library, the distribution of the

points in the first batch heavily affects the overall performance, since they

are used to build the “skeleton” of the tree. At worst, if all the updates af-

ter the first batch are skewed to one side of the k-d tree, all the remaining

points are inserted in a linked list, and the search time becomes linear with

the number of points. This implies the need to rebalance the tree when it is

too unbalanced. In real cases, the imbalance is never that extreme but can

vary substantially if the data added has a different distribution than the ini-

tial tree. The imbalance leads to a slower query time with little degradation

of the result quality. On the other side, when updating a tree for a large

dataset, assuming the data is stationary, the distribution of incoming data

will at some point converge to the distribution of the whole dataset, and the

tree will remain balanced even after new points are inserted.

FLANN’s implementation of k-d trees uses a simple strategy for rebal-

ancing the trees: It reconstructs all trees each time the dataset doubles in size

from the initial dataset (i.e., the first batch). Therefore, the k-d trees can be-

come unbalanced as new data is loaded but eventually will be reconstructed.

When loading a large dataset progressively, even if the incoming distribution

matches the current k-d tree structure, FLANNwill always reconstruct its k-d

trees when the dataset doubles in size. To sum up, the FLANN implementa-

tion suffers from three problems:

1. the k-d tree may become unbalanced when data is added, leading to

longer KNN searches;

2. the k-d tree is always reconstructed when the dataset doubles in size,

leading to long interruptions in the KNN search at unpredictable mo-

ments; and
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3. the k-d tree is always re-created when the dataset doubles in size, even

when it remains balanced.

4.1.3 A Progressive Algorithm

To overcome the limitations of online k-d trees, we made three main changes

to the FLANN algorithm:

1. we maintain a quality measure for each k-d tree,

2. we construct a fresh and balanced k-d tree with all the points when the

measure reaches a bad quality threshold, and

3. the construction is done in a task parallel/interleaved with the query

task, thus spreading the load and avoiding brutal changes in query

times. When a new k-d tree is built, we drop the most unbalanced one

and replace it with that new one.

To estimate the quality of a k-d tree, we use the following method: As-

sume a k-d tree of size N is balanced; its depth is dlog2Ne. The points are

stored as leaves, so accessing a point will require log2N operations. When

a k-d tree becomes unbalanced, its depth will vary, and the query time for

a point p will be proportional to the depth of p. On average, the query time

for accessing p is φp × depth(p), where φp is the probability of searching p

and depth(p) is the depth of p in the tree. On a balanced k-d tree, the cost of

querying for an arbitrary point is log2N , whereas for a specific k-d tree T ,

the cost c(T ) is

c(T ) =
∑
p∈T

φp × depth(p) (4.1)

The loss of a tree is thus the difference between the actual cost and the

lower bound, i.e., the number of additional operations we should perform to

search a point on average. To decidewhenwe should trigger the computation
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of a fresh tree, this loss should be compared to the cost of rebuilding the

whole tree: N log2N . We compute the loss during each query (i.e., c(T ) −

log2N) and accumulate the loss throughout all trees. Once the accumulated

loss exceeds a threshold or a specific proportion of the rebuilding cost (i.e.,

α×N log2N , whereα is a reconstructionweight),we start the reconstruction.

In practice, we do not compute Equation 4.1 for every update but main-

tain the cost incrementally. For each point p, we maintain the depth of the

point, depth(p), and the number of times the point is searched, freq(p). Let’s

define
∑

freq =
∑

p∈P freq(p); then φp can be calculated by φp = freq(p)∑
freq .

Suppose that we insert a new point q into the tree with the InsertPoint pro-

cedure and that q reaches an existing point p at a leaf node. As the leaf node

becomes an internal node and p becomes its child, the depth and frequency

of p increase by one. The updated cost C ′ is computed from the current cost

C as follows:

C ′ =

∑
freq×C + freq(p) + depth(p) + 1∑

freq+1

After the update, we increment freq(p) and depth(p) by one.

When we need to reconstruct a k-d tree (i.e., the accumulated loss ex-

ceeds the threshold), we distribute the reconstruction load across multiple

iterations by building the tree incrementally. To this end,we implement a non-

recursive version of Algorithm 1 using a build queue, allowing the whole

procedure to be interleaved between iterations. The progressive reconstruc-

tion algorithm (Algorithm 3) is similar to Algorithm 1, except that recursive

calls are replaced with insertion into the queue.

To achieve progressiveness, the algorithm should work only for a given

number of operations and stop, allowing the system to access the ongoing

results. Each time the progressive algorithm runs, it is given a certain quan-
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Algorithm 3 A progressive algorithm for building a new k-d tree
1: procedure INITIALIZEBUILD(L)

Input: L is a list of l points ofD dimensions.
Output: returns the root node of the new tree
2: queue← a new work queue
3: root← a new node
4: queue.push((root, L))
5: return root
6: end procedure
7:
8: procedure PROCESSBUILDQUEUE(ops)
Input: ops is the number of operations for reconstruction
Output: returns true if reconstruction is done
9: count← 0

10:
11: while count < ops and queue is not empty do
12: node, L← queue.pop()
13: count← count+ 1

14:
15: if L has only one point then
16: mark node as a leaf node.
17: node.point← L[0]

18: continue
19: end if
20:
21: calculate the variance of each dimension in L
22: node.cutdim← a random dimension with large variance
23: node.cutval← median([p[node.cutdim] for p in L])
24:
25: le�← [p for p in L if p[node.cutdim] ≤ node.cutval]
26: right← [p for p in L if p[node.cutdim] > node.cutval]

27:
28: node.le�← a new internal node
29: node.right← a new internal node
30:
31: queue.push((node.le�, le�))
32: queue.push((node.right, right))
33: end while
34:
35: return true if queue is empty
36: end procedure
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tum of time, specified as a maximum number of operations that the algo-

rithm is allowed to perform before returning ongoing results and releasing

the control. The algorithm assigns a fraction of the operations to insertion

tasks and the rest to reconstruction tasks. An insertion task reads one data

point and inserts it into the k-d trees as described in Algorithm 2. If re-

construction is needed after insertion, the algorithm builds a new k-d tree

incrementally by calling the function InitializeBuild first and the function

ProcessBuildQueue in the following iterations, as described in Algorithm 3.

When the new k-d tree is built, the algorithm replaces the most unbalanced

tree with the new one.

Algorithm 4 describes two procedures for initializing and updating pro-

gressive k-d trees, respectively. Both procedures take the opsparameter,which

is the number of operations allowed for each iteration. The algorithm can

freely use this number of operations to perform either insertion or recon-

struction tasks. It can be either specified by the user or adaptively tuned by

the system to limit the latency. The update procedure takes an additional pa-

rameter τ that determines the fraction of insertion tasks over reconstruction

tasks. For example, when τ = 0.5, half of the operations are used (i.e., ops/2)

to insert new points and the other half to reconstruct a tree. A progressive

k-d tree with a larger value of τ will prioritize indexing new points, giving

a lower priority to maintaining the trees balanced. Note that τ is only used

during reconstruction; if reconstruction has not been started due to small ac-

cumulated loss, or because the trees remain balanced, regardless of the value

of τ , all ops operations will be assigned to the insertion task.

Algorithm 4 uses an abstract data structure, a data source, as an input

stream. A data source is a virtual list that represents N points of D dimen-

sions. However, the data source does not need to have all points loaded at
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Algorithm 4An algorithm for initializing and building progressive k-d trees
1: procedure INITIALIZEPROGRESSIVETREES(dataSource, ops)

Input: dataSource is an abstract input stream
Input: ops is the number of points for initialization
Output: return k-d trees initialized with ops points from dataSource
2: initPoints← dataSource.loadNewPoints(ops)
3: trees← a new k-d tree forest built with initPoints
4: updating← false

5: loss← 0

6: N← ops
7: return trees
8: end procedure
9:
10: procedure UPDATEPROGRESSIVETREES(dataSource, ops, α, τ )
Input: dataSource is an abstract input stream
Input: ops is the number of operations allowed for an iteration
Input: α is a reconstruction weight
Input: τ is the fraction for insertion tasks
Output: a tuple of updated k-d trees and a list of newly inserted points
11: if all points in dataSource have been inserted then
12: return (trees, [])
13: end if
14: if updating then
15: insertionOps← τ × ops
16: updateOps← (1− τ)× ops
17: else
18: insertionOps← ops
19: updateOps← 0

20: end if
21: newPoints← dataSource.loadNewPoints(insertionOps)
22: for p in newPoints do
23: N← N+ 1

24: for tree in trees do
25: INSERTPOINT(p, tree)
26: incrementally update the imbalance cost of tree
27: end for
28: end for
29: if not updating and loss> α× N log2 N then . loss is accumulated by a search

procedure
30: updating← true
31: loss← 0

32: newTree←INITIALIZEBUILD(dataSource)
33: end if
34: if updateOps > 0 then
35: done← PROCESSBUILDQUEUE(updateOps)
36: if done then
37: replace the most unbalanced tree in treeswith newTree
38: end if
39: end if
40: return (trees, newPoints)
41: end procedure



the beginning; it can load some of them when needed. The loadNewPoints

function (e.g., line 21 in Algorithm 4) loads a given number of points on de-

mand, avoiding uncontrolled latency resulting from a full initial loading. In

addition, the data source abstracts the implementation of the loading pro-

cedure from the progressive computation, allowing users to choose the best

method for that purpose.

Finally, note that even though a tree is balanced almost perfectly, the loss

(i.e., c(T )− logN) is a small positive number, eventually leading to the con-

struction of a new tree. To prevent this, we can optionally accumulate the

loss only when the loss exceeds a certain value.

4.1.4 Filtered AKNN Search

Visual analytics should allow users to explore data by applying filters dy-

namically. To avoid rebuilding whole k-d trees when the user filters points,

our progressive search algorithmcan restrict its search to a selection of points.

This selection is implemented through a very fast bit vector library [30]: The

list of filtered points is converted into a compressed bitmap and passed to

the search function that gathers the k neighbors, making the search function

ignore the points in the bitmap. This filtered search is slightly slower than a

non-filtered search, depending on the number of points filtered, but always

faster than rebuilding whole k-d trees before performing the query.

The original FLANN algorithm has a provision for removing points from

the k-d trees, marking them as deleted. Deleted points, just like our filtered

points, are ignored by the search method. They are also filtered out from the

reconstruction of balanced trees. Our implementation offers a more flexible

mechanism at a low cost.

71



4.2 k-Nearest Neighbor Lookup Table

One frequent application of nearest neighbor search is finding the neigh-

bors for every single point in the data, which is known as all nearest neighbor

search [126]. Similarly, we can think of a search problem of finding the ap-

proximate k-nearest neighbors for every single data point in data, which we

will call all approximate k-nearest neighbor (AAKNN) problem. The AAKNN

problem becomes common in modern analytic methods to replace a com-

plete distance matrix with a useful approximation that remains manageable

in space and time. For example, the Approximate t-Distributed Stochastic

Neighbor Embedding algorithm (A-tSNE) [106] uses AAKNN search to ef-

ficiently compute the distances between the k-nearest points. Therefore, pro-

viding an efficient data structure and algorithm for the AAKNN problem

will allow progressive systems to support such general and sophisticated

methods.

A KNN lookup table is a 2D table with N rows and k columns where N

is the number of points in data P and k is the number of neighbors that we

want to compute. Formally, a KNN lookup table T is defined as follows:

T [i] 7→ KNNk(P [i]), where i ∈ [1, N ]

As a sequential approach, we can precompute and store in a N × k table

the k-nearest neighbors for each point in P to enable constant-time lookup.

Specifically, using any AKNNmethod, we fill each row of theN × k table so

that the i-th row in the table contains the approximate k-nearest neighbors

of the i-th point in the data; it can contain either its index, its distance to the

i-th point, or both. This simple method suffers from similar limitations to
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those of sequential k-d trees such as Algorithm 1: It requires all points to be

accessible when building the table, and the build time is not bounded.

To build the table progressively, we will use a forest of progressive k-d

trees internally, built and maintained progressively as we described in the

previous sections. We need an additional progressive algorithm to construct

andmaintain the table. Our algorithm is iterative, with each iteration having

the following three phases:

1. (Indexing) Load new points from a data source and insert them into

the internal progressive k-d trees.

2. (Appending) Compute the neighbors of the new points and append

the result to T .

3. (Update) Update the old neighbors in T with the new points.

In the indexing phase, a set of new points is loaded from a data source P

and inserted into the progressive k-d trees. As we discussed in the previous

section, we do not load a fixed number of points for each iteration, but the

number is determined in Algorithm 4 based on three factors: the number of

allowed operations for the current iteration (ops), the fraction of time used

for insertion tasks vs. rebuilding tasks (τ), and whether a new k-d tree is

being built or not. Let Batch1 be the list of new points loaded in the first in-

dexing phase. In the following appending phase, we compute the k-nearest

neighbors of the points in Batch1 and append the result to the table T as new

rows. To this end, for each point p in Batch1, a single KNNquery is performed

on the k-d trees updated in the indexing phase, which takes O(logN) time.

Then, the neighbors of the i-th point are stored in T [i], allowing constant-

time lookup for future queries on the point. At this moment, since all neigh-

bors in T are up to date, we skip the update phase and continue to the second

iteration.
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During the indexing phase in the second iteration, we load a set of new

points, Batch2, and insert them into the trees. As in the first iteration, we also

append |Batch2| new rows with neighbors. So far, we have filled in |Batch1|+

|Batch2| rows into T with their approximate k-nearest neighbors. The prob-

lem is that the neighbors for the points in the first batch Batch1, which were

computed during the first iteration, can be outdated because there can be

closer neighbors inBatch2. Therefore,we need to findwhatwe call dirty points

in T and update their neighbors.

The update phase repairs the table by recomputing the neighbors of dirty

points. One straightforward approach would be, each time a new point p is

added to T , we iterate over all points in T and check whether a point needs

updating by comparing the distance to its k-th neighbor (i.e., the farthest

neighbor) and the distance to p. Then, if the point is dirty, we drop its k-th

neighbor and insert p into its neighbor set as a new neighbor. In this method,

we need anO(N) loop for dirtiness check each time we insert a point, which

results in O(N2) complexity in total.

Our implementation improves the time complexity of the update proce-

dure by approximating the search process. Our assumption is that, for a new

point p, its neighbors from older generations inKNNk(p) are likely to have p

as a new neighbor. This means we can first inspect the dirtiness of the neigh-

bors of the new point, KNNk(p), to narrow down the search space. As an

extreme case, if the neighborhoods between points are completely mutual

(i.e., q ∈ KNNk(p) ⇒ p ∈ KNNk(q)), we can greatly reduce the search

space by only considering the points inKNNk(p).

Based on this optimistic assumption, we first search for dirty points in

KNNk(p). We define those dirty points as a set S1(p). This can be written as
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follows:

S1(p) = {q | q ∈ KNNk(p) ∧ p ∈ KNNk(q)}

Note that in real cases, the neighborhood between two points is asym-

metric, i.e., q ∈ KNNk(p) ∧ p /∈ KNNk(q). Therefore, there can be dirty

points that have p as a new neighbor but are not in the k-nearest neighbors

of p, and we miss them in S1(p). To find these missing dirty points, we ex-

pand our search space one step further by applying our assumption again

on S1(p). We define S2(p) as follows:

S2(p) = {q | q ∈ S1(p) ∧ p ∈ KNNk(q)} − S1(p)

From a global point of view, calculating S2(p) propagates the dirtiness to the

neighbors of the points in S1(p). We define a setDP2(p) that accumulates all

dirty points that we have found so far:

DP2(p) = S1(p) ∪ S2(p)

Generally, we define Si(p) and DPi(p) as follows:

Si+1(p) = {q | q ∈ Si(p) ∧ p ∈ KNNk(q)} −DPi(p)

DPi+1(p) = DPi(p) ∪ Si+1(p)

We continue to propagate dirtiness until no new dirty points are found,

i.e., Si+1(p) becomes empty. Our algorithm is approximate; it does not guaran-

tee to find all dirty points. However, if the input points follow our assump-

tion, our algorithmwill findmost of the dirty points by narrowing the search

space to the vicinity of the query point p, not checking all the input points.

The accuracy of a KNN lookup table is therefore determined by the approxi-
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mation in both k-d trees and dirtiness propagation. In Section 4.3.2, we report

on the overall accuracy of KNN lookup tables on real data.

At worst, our algorithm checks all the points, just as the naïve approach

does. In other words, the number of points searched in the third phase is

not bounded, which can result in a long delay before completing the update

phase. Note that our algorithm can be seen as a graph traversal if we regard

points as vertices and the neighborhood between points as edges. There-

fore, taking a similar approach to breadth-first search (BFS), we can limit

the number of checked points in the update phase by introducing an up-

date queue. Specifically, for a point in Si(p), we first insert it into the update

queue. For each iteration, we take a fixed number of points from the queue

and propagate a dirtiness check. We also use a bitmap as a set to prevent a

point from being inserted into the queue more than once. This allows the

update phase to finish after checking a fixed number of points, preserving

the progressiveness of the algorithm.

Similar to the progressive k-d tree algorithm that used a parameter τ to

choose the fraction of insertion and reconstruction tasks, the KNN lookup

tables have an additional parameter, named a queue update fraction, λ, to

balance the number of operations assigned to internal k-d trees (i.e., the in-

dexing phase) and queue updates (i.e., the update phase). Given the two

parameters (τ and λ) and the number of allowed operations (ops), the algo-

rithm assigns the operations as follows: First, (1 − λ)ops operations are as-

signed to the indexing phase for updating internal progressive k-d trees. The

algorithm calls the function UpdateProgressiveTrees in Algorithm 4 with

(1− λ)ops and τ as arguments. The function returns the number of inserted

points, which is the number of points that are inserted in the appending

phase. Finally, in the update phase, at most, λops points are taken from the
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Algorithm 5 An algorithm for building a progressive KNN lookup table
1: procedure INITIALIZEPROGRESSIVETABLE(dataSource, k)

Input: dataSource is an abstract input stream
Input: k is the number of neighbors we want to compute
Output: initialize an empty KNN lookup table
2: INITIALIZEPROGRESSIVETREES(dataSource, 0)
3: table← an empty table with 0 rows and k columns
4: end procedure
5:
6: procedure BUILDPROGRESSIVETABLE(dataSource, ops, k, τ , λ)
Input: dataSource is an abstract input stream
Input: ops is the number of operations allowed for an iteration
Input: k is the number of neighbors we want to compute
Input: τ is a fraction for insertion tasks for internal k-d trees
Input: λ is a queue update fraction
Output: a KNN lookup table
7: queue← an empty queue
8: queued← an empty bitmap dictionary
9:
10: function UPDATEPOINT(trees, i) . Update the neighbors of a single point i
11: queued[i]← false

12: neighbors← trees.getKNeighbors(dataSource[i], k)

13: table[i]← neighbors

14: for an integer j such that 0 ≤ j < k do
15: if not queued[neighbors[j]] then
16: queue.push(neighbors[j])

17: queued[neighbors[j]]← true

18: end if
19: end for
20: end function
21:
22: treeOps← (1− λ)× ops
23: tableOps← λ× ops
24: trees, newPoints← UPDATEPROGRESSIVETREES(dataSource, treeOps,τ )
25:
26: for point in newPoints do
27: UPDATEPOINT(trees, point.index)
28: end for
29:
30: count← 0
31: while queue is not empty and count < tableOps do
32: index← queue.pop()
33: if not queued[index] then
34: queued[index]← true
35: UPDATEPOINT(trees, index) . Propagate changes
36: end if
37: count← count+ 1

38: end while
39: end procedure



update queue and updated if dirty. Algorithm 5 shows the complete algo-

rithm for progressive KNN lookup tables.

4.3 Benchmark

Online algorithms are usually evaluated using competitive analysis [23]:

their performance are compared against an equivalent offline algorithm and

the ratio is reported. This ratio only makes sense when the algorithm needs

to complete to its end, but one premise of progressive data analysis is that

some decision can be made before the algorithm ends. Competitive analysis

does not account for these important early termination cases. On the other

extreme, Eichmann et al. [41] have proposed benchmarks to compare the ef-

fectiveness of databases to fulfill the requirements of data analysis sessions

with or without progressive support. This benchmark requires a full system

used on a realistic task, which is not our purpose. In our work, we remain at

the algorithm level and compare our implementation with the only online

implementation available, provided by FLANN.

We conducted two benchmarks to evaluate our progressive k-d trees and

KNN lookup table. The first benchmark compares the performance of online

k-d trees and our progressive k-d trees and the second measures the build

and query time of a KNN lookup table.

4.3.1 Online and Progressive k-d Trees

In this benchmark, we compare the performance of online and progressive

k-d trees. We used one real dataset (the GloVe [104] dataset) and one syn-

thetic but more structured dataset (a Blob dataset). Both datasets had 1 mil-

lion of 100-dimensional points. The GloVe dataset had embedding vectors

of English words, while the synthetic Blob dataset had points sampled from
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100 isotropic Gaussian blobs, 10,000 points for each. For reproducibility, the

Blob dataset was generated through scikit-learn’s blob generator [103]. The

points in the Blob dataset appear in an increasing order of clusters; for exam-

ple, the first 10,000 points were from the first Gaussian blob, the next 10,000

points were from the second Gaussian blob, and so on. As query points, we

used another 1,000 embedding vectors for the GloVe dataset and random

100-dimensional vectors for the Blob dataset. To see the effect of the insert-

ing order of points, we used two conditions: the order was 1) kept as in the

original dataset (original) and 2) shuffled (shuffled), potentially producing

balanced k-d trees earlier.

For each iteration, we gave 5,000 operations to both the online and the

progressive k-d tree (i.e., ops = 5, 000). The online version used up all oper-

ations to add new points (i.e., 5,000 points were inserted to k-d trees during

one iteration). For the progressive k-d tree, we used three different values

for τ : 0.2, 0.35, and 0.5. A progressive tree with a higher value of τ prioritizes

insertion tasks, assigning fewer operations to maintaining the balance of the

tree. Note that the value of τ only affects the algorithms when reconstruc-

tion occurs. For example, if the accumulated loss due to imbalance has not

reached a certain threshold, all operations will be assigned to insertion tasks

for the progressive k-d trees. We set the value of α (i.e., the reconstruction

weight) to 100. The benchmark was conducted on a single machine, which

was equipped with Intel Core i7-7700K CPU (4.2GHz) and 16GB of main

memory. We used eight threads to process KNN queries in parallel. All al-

gorithms used four randomized k-d trees and searched 2,048 nodes.

We queried 20 neighbors (i.e., k = 20) for each point in the test data and

measured insertion time, queries per second (QPS), andmean distance error

for the neighbors found. Insertion time is the time taken to insert points into
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trees in a batch (e.g., 5,000 points in the case of online trees). Queries per sec-

ond (QPS) is the mean number of queries processed in a second, indicating

the balance of search trees.

The quality of sequential AKNN algorithms have usually beenmeasured

using search precision [96], defined as the fraction of exact neighbors returned

from an approximate algorithm. However, we found search precision un-

derestimates the quality of online and progressive algorithms; for example,

if only 10% of the data is indexed and the exact neighbors are uniformly

distributed in data, the search precision of a progressive algorithm cannot

surpass 10%, since 90% of the exact neighbors are not in the index. There-

fore, we measured a relative error,mean distance error (MDE); for each query

point, we first compute the ratio between the distances to its exact k-th near-

est neighbor and to its approximate k-th nearest neighbor and then calculate

the mean of the ratios for all query points. An MDE of one means that the

exact neighbors were found, and anMDE of two means on average the algo-

rithm found neighbors that are two times farther than the exact ones.

Figure 4.1 shows the changes in measures per iterations according to

datasets and ordering conditions. Since the online trees used all 5,000 op-

erations to insert new points, the corresponding red line ends at the 200th

iteration (1,000,000 / 5,000 = 200). The online algorithm builds new trees

each time the number of inserted points doubles. This behavior yields spikes

in the insertion time (the red lines on the leftmost charts in Figure 4.1). The

spikes clearly revealed the limitation of the online trees: At the 126th iter-

ation, the online trees produced a peak latency in insertion time that was

longer than 10 seconds. In contrast, regardless of datasets and ordering con-

ditions, the progressive trees kept the insertion time under one second: in

progressive k-d trees, abrupt changes in insertion time were removed. Since
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we controlled the number of operations in one iteration to achieve progres-

siveness, not execution time, insertion time varied depending on the num-

bers of insertion and reconstruction tasks.

Regarding QPS, the online trees had a performance gain after tree recon-

struction, since the trees became well balanced (i.e., at the 62nd and 126th

iterations in the middle column of Figure 4.1). The progressive trees showed

lower performance, but the gap could be narrowed by adjusting the value of

α (i.e., the reconstruction weight). Progressive trees with a smaller value of

τ yield better QPS, but the differences were small.

Asmore pointswere inserted to k-d trees, themean distance error (MDE)

of answers decreased, finally converging to an MDE of 7% for the GloVe

dataset and 3% for the Blob dataset. We measured the time from the begin-

ning to themomentwhen theMDE converges andmarked it in the rightmost

charts in Figure 4.1. The online tree took the smallest number of iterations

to reach the final MDE. The reason may be that it used all its operations

to insert new points, so exact neighbors were more likely to be in the trees

and searched. Indeed, progressive k-d trees with a larger value of τ assigned

more operations to index new points, producing faster convergence. How-

ever, due to the longer insertion time, the online trees took the longest time

to reach the final MDE, which suggests the effectiveness of our progressive

k-d trees.

In the Blob dataset under the shuffled condition, the progressive trees gen-

erally took the fewest iterations to index the whole dataset and the shortest

time to reach to the final MDE. The reason may be that the dataset had ran-

domly sampled points in a random order, so the trees spent the fewest oper-

ations in rebalancing and the approximation in k-d trees was effective.
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The benchmark showed that the value of τ can be tuned to achieve the

desired behavior of progressive k-d trees. Using a smaller value of τ leads to

shorter insertion time and larger QPS, improving the scenarios where high

throughput is important. However, the downsides are that 1)more iterations

are required to index input points and 2) it takes longer to reach a certain

level of accuracy. Nonetheless, regardless of the value of τ , we found that our

progressive trees outperforms online trees for progressive systems in that the

insertion time can be maintained below a specific bound with comparable

QPS and better accuracy.

4.3.2 k-Nearest Neighbor Lookup Tables

The second benchmark evaluates the performance of KNN lookup tables.

As in the first benchmark, we used the GloVe and Blob datasets and the two

ordering conditions (i.e., original and shuffled). For progressive k-d trees,

we used the same settings as those used in the first benchmark except ops =

4, 000 for shorter insertion time. Since KNN lookup tables were designed for

the all approximate k-nearest neighbor problem, we sampled 1,000 points

from the training data as test data instead of using an extra set of 1,000 points.

We set the value of τ for internal progressive k-d trees to 0.5. To see the effect

of dirtiness tests, we used three different values for λ (i.e., the queue update

fraction): 0.3, 0.4, and 0.5. Other constants were identical to those of the first

benchmark, such as k = 20 and α = 100. For the internal indexer, we used

four progressive trees. KNN queries for updating lookup tables traversed

at most 2,048 nodes in each tree. As in the first benchmark, we measured

insertion time, queries per second (QPS), and mean distance error (MDE).

Figure 4.2 shows the result of the second benchmark. Overall, the inser-

tion time of progressive KNN lookup tables increased compared to that of a
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progressive tree.Weprofiled the time to complete eachphase inKNN lookup

tables and found that the longer insertion times resulted from computing the

k-nearest neighbors of every unseen point (i.e., points in a batch). However,

since the KNN lookup tables can answer a KNN query in constant time (i.e.,

one table lookup operation), QPS of the KNN lookup tables was a few or-

ders of magnitude higher than that of progressive trees. In a sense, a KNN

lookup table increases build time but significantly reduces the query time

with a complexity of O(1) instead of O(log2N).

The effect of the queue update fraction (λ) was clearly seen in the bench-

mark. Using a smaller value of λ resulted in shorter insertion time at the cost

of high mean distance error, since it gave a low priority to maintaining the

table up to date (i.e., dirtiness tests). Note that QPS of the tables was not af-

fected by the value of λ, since a query was merely a lookup operation that

can be done in constant time. This provides flexibility in changing the behav-

ior of KNN tables. For example, one can adjust λ to strike a balance between

insertion time and accuracy depending on applications.

4.4 Applications

The long computation time of sequential KNN methods has limited the po-

tential use of data mining algorithms in interactive visualization systems. In

this section, we improve three popular sequential algorithms to become pro-

gressive: KNNregression, KNNdensity estimation, and the t-SNE algorithm

[84], adding them to the toolbox of interactive analysis tools.

4.4.1 Progressive Regression and Density Estimation

One common use of k-nearest neighbors is interpolating an unknown tar-

get value using training data, which is called KNN regression. Suppose that
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training dataX consists ofN instances, x1, x2, · · · , xN , and each instance has

a target value, yi. The target value of an unseen instance xnew can be predicted

based on the target values of its neighbors:

ynew =
∑

p ∈ KNNK(xnew)

wpyp (4.2)

where wp is the weight for the neighbor p. The fractions can be either a con-

stant (i.e., 1/k) or inversely proportional to the distance to xnew. The training

data X can be indexed progressively using our k-d trees, which gives us an

estimate of KNNk(xnew). Finally, we can compute and improve ynew using

Equation 4.2 in a progressive manner.

Another possible application of PANENE is progressive KNNdensity es-

timation. KNN density estimation is similar to KNN regression except that

it predicts the density of training data on a specific point instead of a tar-

get value. The goal of KNN density estimation is to provide density infor-

mation on 2D input points to help users understand the distribution of the

input points. Again, suppose that training data X consists of N instances,

x1, x2, · · · , xN . Using a Gaussian kernel with a bandwidth h, the density of

X on a specific point p is given by ρ(p):

ρ(p) ∝
∑
x ∈ X

e−
(p−x)2

2h2 ρ̂K(p) ∝
∑

x ∈ KNNK(p)

e−
(p−x)2

2h2 (4.3)

which has a complexity ofO(N) since it iterates over all the points. Themain

idea of KNN density estimation is that, as the target point p becomes farther

away from an instance x, the Gaussian kernel will give it a smaller value

converging to zero, and its impact on ρK(p) becomes negligible. This gives

us an opportunity for approximating the density using only the neighbors of

q. The approximated density ρ̂K(p) can be computed by Equation 4.3 (right).
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Given 2D input points, we first choose sample points on a grid of r rows

and c columns. Using a progressive k-d tree, we estimate and improve the

density of input points on each sample point. Then, density isolines are com-

puted using the marching square algorithm [81] and visualized through a

contour plot. Note that the number of neighbors K should be chosen with

care, since the estimated density can be saturated with small K as the data

size grows. In the Appendix, we included an example of progressive KNN

density estimation using three different values ofK.

4.4.2 Responsive t-SNE

t-Distributed Stochastic Neighbor Embedding (t-SNE) [84] is a nonlinear di-

mensionality reduction algorithm that is widely used in data analysis. Given

a set of high-dimensional points, x1, x2, ...xN , in a feature space, t-SNE maps

the points to low-dimensional points (i.e., embedding), y1,y2, ...yN , that de-

scribe the similarities between the original points in the embedding space.

Usually, the high-dimensional points are projected on a 2D space and visu-

alized through conventional scatterplots or density plots, which can help the

user to understand the distribution and structure of the original points. The

original t-SNE algorithm runs with a complexity of O(N2).

To improve the computation time of the original t-SNE algorithm, the

Barnes-Hut Stochastic Neighbor Embedding (BH-SNE) [127] reduces the

complexity to O(N logN) by applying the Barnes-Hut approximation [16]

to compute the contribution of points. BH-SNE is faster than the original t-

SNE algorithm, but not enough to guarantee that the computation latency

will remain under a few seconds [99].

From a high-level point of view, the BH-SNE algorithm consists of two

parts: 1) computing the k-nearest neighbors of each point tomeasure the dis-
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tance between the points and 2) a gradient descent iteration that minimizes

a loss function between the distributions of points in the original space and

the embedding space. The long initial delay of BH-SNE mainly stems from

the neighbor computation. Any KNN methods covered in Section 2.3 can

be adopted to speed up the neighbor computation. However, those methods

are still blocking, which eventually causes longer precomputation times as the

data size grows.

To improve the responsiveness of BH-SNE,we created a variant that com-

putes both the nearest neighbors and the embedding progressively; we call

it responsive t-SNE. As a proof-of-concept prototype, we have implemented

responsive t-SNE by integrating PANENE with the BH-SNE algorithm. Re-

sponsive t-SNE spreads the load of neighborhood computation to later itera-

tions, alleviating the initial overhead coming from the blocking KNNmeth-

ods. Specifically, we used PANENE’s KNN lookup table to progressively in-

dex and compute the k-nearest neighbors of each point. In contrast to the

previous BH-SNE algorithmwhere neighbor computation must precede the

gradient descent loop (i.e., loss minimization), we move the neighbor com-

putation inside the training loop: The training loop of our algorithm alter-

nates between 1) updating the KNN lookup table (i.e., indexing new points)

and 2) updating the projection to minimize loss. As training proceeds, the

projection is improved in terms of both quantity (i.e., the projection includes

more points) and quality (i.e., the projection minimizes the error between

the original points and the embedded points).

To compare our responsive t-SNE algorithmwith the BH-SNE algorithm,

we ran both algorithms on the MNIST dataset [71] as an exploratory bench-

mark. TheMNIST dataset consists of 60,000 vectors, each vector representing

784 (28×28) pixels of a handwritten digit scanned. We used an open-source
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implementation of BH-SNE [22] as a baseline. In contrast to the BH-SNE al-

gorithm, where the projection (i.e., yi) is randomly initialized for all points,

we used random initialization only for the points in the first batch. For each

point in later batches, we set its initial position to the centroid of its k neigh-

bors, which is a better starting point. We set the perplexity of t-SNE to 10,

which led the algorithm to compute 30 neighbors for each point, and the

threshold of the Barnes-Hut algorithm (i.e., θ) to 0.5.

Figure 4.3 shows the time taken to initialize the two algorithms and the

resulting embeddings over the iterations. Each point in the scatterplots rep-

resents a single vector, with its color encoding the corresponding digit (i.e.,

0 to 9). The BH-SNE algorithm took 44.7 minutes to initially compute the

nearest neighbors, while our algorithm produced an initial estimate in a few

seconds. To assess the quality of embeddings, we measured the Kullback-

Leibler divergence (i.e., loss) between the distributions of points in the orig-

inal and embedding spaces as in the original paper [84]. The embeddings

were improved over iterations, giving the final loss of 3.96 for BH-SNE and

4.59 for responsive t-SNE.

Since responsive t-SNE computes an embedding incrementally, the qual-

ity of the resulting embedding can be affected by the order of input points.

For example,we can create an extremely skeweddataset by sorting theMNIST

data by the digit each instance represents (e.g., from 0 to 9). To alleviate the

bias resulting from the skewed data, we introduce a technique called periodic

exaggeration, which is inspired by a technique from a previous study [84]. Pe-

riodic exaggeration regularly multiplies a constant factor to the conditional

probabilities between points, which allows the clusters in the data to form

separated clusters in the embedding. For instance, the responsive t-SNE al-

gorithm increases the conditional probabilities by a factor at the beginning

89



Fi
gu
re
4.
3:
Em

be
dd
in
g
of
th
e
M
N
IS
T
da
ta
se
tu
si
ng
Ba
rn
es
-H
ut
t-
SN
E
an
d
Re
sp
on
si
ve
t-
SN
E.
Th
e
Ba
rn
es
-H
ut
t-
SN
E
al
go
rit
hm

to
ok

ab
ou
t4
5
m
in
ut
es
to
pr
ec
om

pu
te
th
e
ne
ar
es
tn
ei
gh
bo
rs
of
da
ta
po
in
ts
.O
ur
re
sp
on
si
ve
t-
SN
E
pr
od
uc
ed
th
e
in
iti
al
re
su
lt
in
a
fe
w
se
co
nd
s

by
co
m
pu
tin
g
th
e
ne
ar
es
tn
ei
gh
bo
rs
pr
og
re
ss
iv
el
y
an
d
ru
nn
in
g
th
e
op
tim

iz
at
io
n
lo
op

of
th
e
t-
SN
E
al
go
rit
hm

in
an
al
te
rn
at
e
m
an
ne
r.

Ea
ch
ci
rc
le
in
th
e
sc
at
te
rp
lo
ts
re
pr
es
en
ts
a
ha
nd
w
rit
te
n
di
gi
t(
28
×
28
pi
xe
ls
)w
ith

its
ca
te
go
ry
(0
to
9)
co
lo
r-
en
co
de
d.

90



of the 100 first iterations, and restores them to 1 after 30 iterations. Close-

by points become tightly grouped during the exaggeration phase, allowing

points to move more easily to nearby groups, thus avoiding the algorithm to

be trapped in local minima. The tension between points lessens after exag-

geration, making the points distributed according to their original distances.

In theAppendix, we attached a figure that shows the effect of periodic ex-

aggeration and how the embedding changes over time when the order of the

input points is skewed. Exaggeration was applied for 30 iterations at the be-

ginning of every 100 iterations. During exaggeration (i.e., the leftmost three

columns of the figure in the Appendix), one can observe that points with the

same color move to be densely packed. In our prototype, we fixed the dura-

tion and period of exaggeration, but in an interactive analysis, we can involve

users by allowing them to set those parameters and choose the moment to

start the exaggeration.

One common task in exploratory visual analytics is to understand the

overall distribution of multidimensional data. To support this task, we can

construct a visualization pipeline by combining responsive t-SNE and pro-

gressive density estimation. The multidimensional data is first projected on

a 2D plane progressively through responsive t-SNE. Then, we measure the

density of the embedding for each sample point on a grid using the pro-

gressive density estimation algorithm. Finally, we can draw a contour plot to

show the density, giving an overview of the multidimensional data within a

controlled latency.
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4.5 Implementation

We implemented the core of PANENE in C++ as well as a Python binding

of PANENE called PyNENE, for a wider range of applications, such as its in-

tegration in the ProgressiVis toolkit [45]. PANENE relies on the OpenMP li-

brary [38] to processmultiple queries in parallel, and on theRoaringBitmaps

library [30] to support efficient filtering. PANENE, the parameters for bench-

marks, and applications presented in this chapter are available at github.com/e-/PANENE

under the BSD 2-clause “Simplified" License.

4.6 Discussion

We controlled the running time of progressive algorithms by providing the

number of allowed operations (ops) as a parameter of the algorithms. When

we chose ops, our primary goal was maintaining the latency of our algo-

rithmswithin the attention-preserving time limit (i.e., about 10 seconds) [99],

which gave us a few thousands of operations for one iteration in our settings.

However, in practice, this number should be determined and dynamically

adjusted depending on various factors, such as the type of workload (e.g.,

disk access or CPU computation), the computing power of machines, and

its impact on the performance of algorithms. Therefore, we need an extra

step that maps the number of operations to the actual execution time so as

to maintain the progressiveness of the system, which is related to time. One

example is a time predictor, presented by Fekete and Primet [45], which dy-

namically infers the number of operations per second of algorithms bymon-

itoring their execution.

In progressive k-d trees, we assumed that an insertion task (i.e., adding

a point to trees) and a reconstruction task (i.e., splitting a node in a back-
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ground tree reconstruction) were atomic, and that running either of these

tasks takes the same time. However, in an extreme case where the data size

is large, it can be impossible to run even one operation in the given time quan-

tum. For example, splitting nodes into two groups on lines 25 in Algorithm 3

takes a time proportional toN , which will eventually block the systemwhen

N is large enough. One possible remedy is to make the split operation it-

self progressive. For now, in our benchmark settings, it took approximately

0.15 seconds on average to split a node with 10 millions of 100-dimensional

points.

Finally, we assumed that our algorithms run on a single thread. However,

the only constraint we have with the model we rely on [45] is that modules

are run sequentially. Inside a module, algorithms can use as many threads

as needed. Our KNN search uses multiple threads up to the number of k-d

trees for searching, but allocating the threads remains a decision of the pro-

grammer to balance other needs. Allowing the tree reconstruction to be done

in a separate thread could avoid slowing down the indexing operation, but

at the cost of locking mechanisms; more work needs to be done to measure

the best thread allocation strategies.

4.7 Summary

Although k-nearest neighbor computation is common in data mining algo-

rithms, the long computation time has hindered its application for visual

analytics. This chapter presents PANENE, a combination of progressive k-d

trees and KNN lookup tables, for progressive approximate k-nearest neigh-

bor search. We made three major changes to the previous online k-d trees:

maintaining a quality measure to determine when to reconstruct trees, trig-
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gering reconstructionwhen needed, and introducing a build queue to spread

the reconstruction load. Through benchmarks, we found our progressive al-

gorithms could alleviate the abrupt changes in latency that degrade the in-

teractivity of visualization systems. Finally, we presented three applications

of PANENE: progressive regression, progressive density estimation, and re-

sponsive t-SNE.
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Chapter 5

ProReveal: Progressive Visual
Analytics with Safeguards

This chapter 1 describes our novel PVA concept, Progressive Visual Analytics

with Safeguards, and a proof-of-concept system, ProReveal, answering the

third research question (Knowledge Trustworthiness: how do we improve the

trustworthiness of intermediate knowledge gained from progressive visual analyt-

ics?).

We propose Progressive Visual Analytics with Safeguards, a novel visual ex-

ploration concept that helps people manage the uncertainty arising from

progressive data exploration. Progressive visual analytics (PVA) allows peo-

ple to access the partial results of visualization queries in the middle of com-

putation, helping them make data-driven decisions faster even with large-

scale data. However, such intermediate knowledge can be incorrect due to

various machine and human factors. For example, many PVA systems build

and use samples of raw data to estimate results, which leaves a discrepancy

between the precise results and the results based on the samples. Another

1The preliminary version of Chapter 5 is under minor revision for publication in IEEE Trans-
actions on Visualization and Computer Graphics (TVCG).
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reason can be a human factor such as misinterpreting the uncertainty of in-

termediate knowledge andmaking a hasty decision. To address this issue,we

introduce PVA-Guards, which can be used to validate intermediate knowl-

edge during or after exploration and ensure its correctness.

We are especially interested in exploration scenarios where it is infeasible

to obtain precise results during a single session due to a long computation

time. In this case, people can rely only onpartial anduncertain results to steer

their exploration and draw conclusions. As an illustrative example, suppose

an analyst, Zoey, is progressively exploring a large sales dataset of an online

bookstore. She is interested in gathering useful information about the coun-

try that published the most books. Therefore, she first creates a bar chart

of the number of books published in each country. The system shows the

early estimates of publication counts, and she finds the USA has the highest

publication count. However, as the bar chart gets updated (with more data

processed), she notices that the difference in the publication counts for the

USA and China is small.

Zoey needs tomake adecision based onher uncertain intermediate finding—

choosing either the USA or China as having the highest publication count—

to look into the country next. One common strategy to handle this uncer-

tainty is to wait longer until the visualization looks more certain (e.g., wait

for narrower confidence intervals or larger height difference between the two

bars).However, few systems guarantee how long she needs towait to achieve

a certain level of trustworthiness, which can decrease the benefits of PVA,

that is, allowing early decision making. Using another strategy, Zoey can in-

stead take the risk of proceedingwith the uncertainty; she chooses one of the

two countries and proceeds to her next visualization. In this case, she needs
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to consider the worst case of such an optimistic strategy: her choice turning

out to be wrong.

Our concept, Progressive Visual Analytics with Safeguards, provides a

means of managing such uncertainty resulting from progressive visual an-

alytics by allowing people to leave PVA-Guards on uncertain intermediate

knowledge. A PVA-Guard is a hypothetical representation of intermediate

knowledge that people garnered during progressive data exploration. In the

example of Zoey’s exploration, her intermediate knowledge is that the pub-

lication count for the USA is greater than that of China, which can be repre-

sented as a ComparativePVA-Guard, such asPubCount(USA) > PubCount(China),

on a bar chart. Once a PVA-Guard is placed, the system statistically estimates

the validity of her intermediate knowledge and gives continuous feedback

on its validity. In case the PVA-Guard becomes invalid, the system notifies

her so that she canmanage the incorrect intermediate knowledge. Therefore,

with the PVA-Guard on, Zoey can continue her exploration at a desired pace

and confidence.

The main contributions of this chapter are as follows:

• WedefinePVA-Guards, present concrete examples, anddiscuss design con-

siderations to realize our new progressive visual analytics concept (Sec-

tion 5.1);

• We design and implement a proof-of-concept PVA system, ProReveal (Fig-

ure 5.1), integrating seven types of PVA-Guards: Value, Rank, Range, Comparative,

Power Law, Normal, and Linear (Section 5.2);

• We report a qualitative user study with 14 participants conducted to inves-

tigate how people use and interact with PVA-Guards for their progressive

exploration (Section 5.3).
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5.1 Progressive Visual Analytics with Safeguards

While PVAallows people to access intermediate results in themiddle of com-

putation, the trustworthiness of the results remains equivocal. Such uncer-

tainty canmake analysts wait for more certain results or lead them to a hasty

decision.We approach this problem by allowing analysts to explicitly leave a

PVA-Guard on uncertain intermediate knowledge that needs to be verified.

These PVA-Guards not only provide means for testing the correctness of the

conclusion drawn from exploration even when analysts are unavailable, but

also can be used to trace the provenance of intermediate knowledge when

some of them turned out to be incorrect. We envision that PVA-Guards can

provide the following benefits:

• Speed: People can continue to explore data even when ongoing results

are not certain enough, leaving the task of validating intermediate knowl-

edge to the system.

• Correctness: The set of PVA-Guards can be used to validate the correct-

ness of intermediate knowledge gathered from exploration later or in

the middle of analysis.

• Trace: When some intermediate knowledge turned out to be wrong,

PVA-Guards can serve as traces of exploration that enable people to

alter or re-run the analysis.

5.1.1 Definition

A PVA-Guard (hereafter, a Guard) is a hypothetical representation of inter-

mediate knowledge that an analyst gathers during progressive data explo-
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ration. It can be formally defined as follows:

〈PVA-Guard〉 := 〈variable〉 〈operator〉 〈operand〉 (5.1)

where

〈operand〉 := empty | 〈variable〉 | 〈constant〉.

For example, a Guard where 〈variable〉 = PubCount(USA), 〈operator〉 = >,

and 〈operand〉 = PubCount(China) indicates the USA’s publication count is

greater than China’s.

In the definition, the first 〈variable〉part refers to the subject of intermedi-

ate knowledge that the Guard tests. It can be a single value, such as the value

of a cell of a heatmap, the rank of a bar in a bar chart, or even the distribution

of values in a histogram. In the middle of progressive exploration, 〈variable〉

is uncertain and estimated through a statistical procedure if applicable.

The 〈operator〉 part indicates the type of intermediate knowledge and

an operation a Guard performs. For example, common comparison opera-

tors (e.g., ≤) are useful when we want to compare a variable to a constant

or another variable. Other operator can be ∼ (i.e., follows) and ∝ (i.e., is

proportional to) that state a variable (i.e., a distribution of values) follows a

certain distribution or is proportional to another variable, respectively.

The last 〈operand〉 part refers to the object of intermediate knowledge.

The type of 〈operand〉 is determined by the operator. For example, for com-

parison operators, 〈operand〉 can be either a constant or another variable.

〈operand〉 can also be a specific distribution whose parameters are known;

for example, when the operator is set to ∼, 〈operand〉 can be a normal dis-

tribution such asN (20, 102). Finally, 〈operand〉 can be unspecified when the
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operator does not require any operand such as an existence operator that

checks whether a variable exists.

A validity measure of a Guard provides an estimate about how certain the

intermediate knowledge is (Table 5.1). It can be a boolean value (i.e., true

or false), indicating whether the Guard holds or not, but is not limited to,

especially when the intermediate knowledge itself does not have an dichoto-

mous answer (e.g., knowledge that the distribution of values follows a spe-

cific distribution). In some cases, a validity measure can be computed dur-

ing exploration, which would be useful because it can help people judge the

trustworthiness of the intermediate knowledge and steer exploration. For ex-

ample, we can provide statistical significance or a p value on the difference

of PubCount(USA) and PubCount(China) through a Student’s t-test using

sample statistics.

When computing such statistical significance during progressive com-

putation, we can consider the given dataset as a finite population. In this

case, processed rows through progressive computation can be regarded as a

sample drawn from the finite population without replacement. Because the

population is finite, we can obtain a definitive answer on the statistical signif-

icance when the entire dataset is processed; for example, a p value will con-

verge to either 0 or 1 in the end. On the other hand, we can view the dataset

as a sample drawn from a hidden infinite population (i.e., the world). In this

case, even after the whole dataset is processed, the result remains uncertain.

We take the former perspective; we estimate the final result using the statis-

tical procedures for a finite population of sizeN (i.e., the number of rows in

data). Note that by settingN to∞, we can compute p values and confidence

intervals from the latter perspective. Details on the procedures can be found

in supplementary materials.
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Name Domain Examples in ProReveal

Probability [0, 1] p value from a t-test
Quality [0, 1] Kolmogorov-Smirnov statistic
Error [0,∞) Root mean square error (RMSE)

Boolean value {true, false} Estimates on MIN and MAX

Table 5.1: Validity measures of PVA-Guards

For both cases, however, p values obtained in the middle of computation

do not guarantee to faithfully indicate the precise result, so interpretation of

these values should be done with care and often requires prior knowledge,

considering the importance of the decision.

5.1.2 Examples

To elicit candidates formeaningful Guards, we started from identifyingwhat

knowledge people can gain from a single visualization. We inspected a low-

level task taxonomy that consists of the tasks that people perform on a vi-

sualization and possible outcomes from the tasks. Amar et al. [4] identi-

fied ten low-level tasks of analytic activity in information visualization: Re-

trieve Value, Filter, Compute Derived Values, Find Extremum, Sort, Deter-

mine Range, Characterize Distribution, Find Anomalies, Cluster, and Cor-

relate. In this section, we demonstrate how the knowledge gained by per-

forming each of these tasks can be represented as a Guard. We categorized

these 10 tasks into four sets depending on 1) whether intermediate knowl-

edge from the task can be stated and validated as a Guard and 2) the type of

a possible validity measure for the Guard.

Tasks as Guards with Statistical Significance. The first set of tasks allows

people to represent intermediate knowledge as a Guard, and there is also a

statistical test for the validity of the knowledge which gives a statistical sig-
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nificance, such as a p value. For example, the Retrieve Value and Compute

Derived Value tasks are to identify an attribute of a single data item and a

derived value (e.g., a mean) of a set of data items, respectively. The interme-

diate knowledge from these tasks can be an estimate of the target value, and

Guards for this value include hypotheses such as the value is greater or less

than a threshold, or is in a specific range. For all the cases, p values can be

given as validity measures through a t-test, considering the processed data

items as a sample of the entire dataset, although those measures should be

interpreted with care. Similarly, the results of the Find Extremum and Sort

tasks are a data item and its rank, respectively, which can be described as

a Guard stating that the rank of the item is equal to a number, or higher or

lower than a threshold.

Tasks as Guards with Validity Measures. The intermediate knowledge of

tasks in the second set can be described as a Guard with an interpretable

statistic as a validity measure. For example, the intermediate knowledge for

the Characterize Distribution task can be a specific distribution that data

values are expected to follow. In a Guard form, 〈variable〉 is the distribu-

tion of values, 〈operator〉 is ∼, and 〈operand〉 is the distribution one iden-

tified, such as N (µ, σ2). To measure how similar the actual distribution of

values is to the expected distribution, one can use the Kolmogorov-Smirnov

statistic [117] as a validity measure, which is defined as the maximum dif-

ference between the cumulative probability functions of two distributions.

For the Correlate task, the process of determining the relationship between

two attributes, both 〈variable〉 and 〈operand〉 are the values of two differ-

ent attributes. 〈operator〉will vary depending on the relationship one found;

for example, if a linear relationship is of interest, one can use a ∝ operator
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and the error from linear regression between two attributes (e.g., root mean

square error, RMSE) as a validity measure.

Tasks as Guards without Validity Measures. The third set of tasks con-

sists of the tasks fromwhich quantifying the validity of intermediate knowl-

edge is infeasible in the middle of computation. For example, theDetermine

Range task is an activity of finding the span (i.e., minimum and maximum)

of a given attribute. The intermediate knowledge can be expressed by de-

scribing an acceptable range in a similar way to the Retrieve Value task.

However, in this case, the validity measure would be a boolean value (true

or false), since it is challenging to reliably estimate the minimum and maxi-

mum values of an attribute due to the sensitivity of these values. Similarly,

the Filter task is designed to find the data items that satisfy given conditions.

Possible intermediate knowledge from the task is whether such data items

exist, that is, 〈operator〉 will be exist with 〈operand〉 of empty, but it is also

hard to predict the existence robustly before processing the entire dataset.

Tasks as Ill-defined Guards. The last set of tasks includes high-level tasks

such as Find Anomalies andCluster. One can create a Guard for these tasks

such as Num of Clusters in Heatmap = 3, but it is hard to validate such a

Guard even after the entire dataset is processed because these tasks require a

choice of complex algorithms and parameters. Guards for these tasks would

be useful since they can capture higher-level knowledge, but we leave de-

signing and validating such Guards as future work.

5.1.3 Design Considerations

In this section, we discuss design considerations in realizing progressive vi-

sual analytics with PVA-Guards on interactive visualization systems.
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Input: Explicit vs. Implicit.Guards need to capture intermediate knowledge

people want to verify, and thus we need to consider the explicitness of inter-

actions that people use to present their intermediate knowledge to a sys-

tem. One end of the explicitness continuum is a fully explicit input where

people clearly write down a Guard, for example, using a programming lan-

guage. In this case, people may articulate their knowledge most accurately,

but such an approach can be cumbersome and interrupt exploration. On the

opposite end of the continuum, we can imagine a fictional system that au-

tomatically identifies intermediate knowledgewithout any user intervention

(e.g., eye tracking technology can be used to capture the user intention [60]).

This non-intrusive approach, however, can be error-prone, leading people to

spend more time fixing the incorrectly captured Guards.

Other interactionmethods can be placed in themiddle of the continuum.

One example is semantic interactions [42] where user interactions are asso-

ciated with an intention, such as moving two document icons closer for pre-

senting similarity between the documents. In ProReveal, we designed a user

interface to allow users to explicitly present their knowledge obtained from

a visualization to the system.

Validation: Online vs. Offline. Another tension exists regarding when to

validate Guards, since verifying the Guards themselves consumes computa-

tional resources. Seeking the greatest accuracy, one can validate Guards dur-

ing progressive data exploration (i.e., online) at the cost of sacrificing some

computational resources that could be spent on exploring data. In contrast,

one can validate the Guards after the exploration (i.e., offline), which can be

done even when one is offline (e.g., after work). In this case, since Guards

that need to be validated are already known, offline computation can speed

up the validation process, for example, by testing related Guards together.
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A hybrid approach is also feasible to balance accuracy and efficiency, for ex-

ample, by allowing people to choose which Guards to be validated online or

offline based on their importance. In ProReveal, we validate Guards online

and show their validity measures in a PVA-Guard list (Section 5.2.3).

Violation: Passive vs. Active.When a Guard turns out to be wrong (e.g., the

value of a variable is out of an expected range or the error of linear regression

is too large), a system needs to report such a violation to analysts. Simply, the

system can take a passive approach, for example, by alerting the analysts and

waiting for actions. This is similar to common monitoring systems such as

intrusion detection systems (IDS) for network security [1]. Analysts can pre-

scribe how to react to such violations in advance, which allows more active

and complex operations. More advanced systems would be able to suggest

new values or parameters for the brokenGuard and automatically re-run the

analysis even when analysts are offline. In all the cases, the Guards can indi-

cate the provenance of intermediate knowledge and can be used to manage

the violation. In ProReveal, we employ a passive approach; we present the

validity measures of PVA-Guards and let analysts manage violations.

5.2 ProReveal

To provide a clear example of our concept in practice, we designed and im-

plemented a proof-of-concept system, ProReveal. ProReveal integrates PVA-

Guards into progressive data exploration, allowing people to seamlessly ar-

ticulate their findings as Guards in the middle of exploration. With ProRe-

veal, we realize seven important Guards: Value, Rank, Range, Comparative,

Power Law, Normal, and Linear. In this section, we elaborate on our design
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Figure 5.1: TheProReveal Interface. a) Two visualization lists, one for ongoing visualiza-
tions and the other for completed visualizations, provide feedback on progress and the
ability to control the execution. b) In the main view, A gradient plot is showing the esti-
mated counts of movies of each genre. c) In the PVA-Guard panel, an analyst is creating
a Power Law PVA-Guard to leave intermediate knowledge that the distribution of values
follows a power law distribution. d) The PVA-Guard view gives an overview of the created
PVA-Guards and shows the estimates of their validity.

rationale and the challenges we confronted while integrating PVA-Guards

into a progressive data exploration system.

5.2.1 Design Rationale

DR1: Seek Simplicity but Include Essentials. Serving as a proof-of-concept

system for demonstrating the seven Guards, ProReveal is designed to pro-

vide an initial platform for observing howpeople use and interactwithGuards

in progressive data exploration. To this end, we sought simplicity while in-

cluding the features essential in progressive visual analytics to our design.

For example, ProReveal implements important requirements for PVA, such

as uncertainty visualization, feedback on progress, execution control, priori-

tization, and providing quality measures. Nonetheless, we keep the remain-
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Figure 5.2: Themain viewwith a heatmap. a) A toolbox on the main view provides ad-
ditional features of a visualization, such as changing the number of bins or postponing
automatic updates of a visualization. b) The PVA-Guard menu, appearing when people
click on a bar or a cell, enables three special operations on the visual element: 1) creating
a new visualization only with the data items under the element, 2) leaving a PVA-Guard
on the element, and 3) showing the underlying data items.

ing parts of ProReveal as simple as possible. For example, we decided to

provide only two types of visualization (i.e., a gradient plot and a heatmap

with Value-Suppressing Uncertainty Palettes [36]) and limit the types of vi-

sualization queries.

DR2: Allow Explicit Presentation of PVA-Guards. On a continuum of the

explicitness of Guard presentation, we designed our system to support ex-

plicit presentation of Guards; people explicitly demonstrate directly on the

visualization what intermediate knowledge theywant to keep. In ProReveal,

people can click on a visual element (i.e., a bar in a bar chart or a cell in a

heatmap) and select the type of Guard that theywant to leave on the element

(Figure 5.2b). This can allow people to create Guards in a familiar and accu-

rate manner, preventing potential errors that can occur when amore implicit

method is employed.
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DR3: Respect Intermediate Results. Theoretically, people can make Guards

that are inconsistent evenwith the current intermediate results. For example,

suppose a bar whose value is 50 with a standard error of 10, estimated by

randomly sampling 10% of data. One can make a Guard that confirms the

value of the bar is greater than 100, but it is unlikely to happen. In ProReveal,

the use of such overly optimistic Guard is discouraged by permitting only

Guards that respect the current intermediate results. For instance, in a Value

Guard that compares the value of a bar or a cell with a given constant, the

operator (i.e., ≥ or ≤) is automatically set by comparing the current value

and the constant. Another example can be a Range Guard where the center

of the target range is always set to the current value of a bar (i.e., only the

width of the range can be controlled).

DR4: Keep PVA-Guards Visible. The collection of Guards can serve as an

overview of progressive data exploration and the provenance of knowledge

generated. Moreover, an unexpected value for their validity measures can be

a signal for further inspection or altering the direction of exploration. To gain

these benefits, we keep Guards and their validitymeasures always visible on

the interface (i.e., in a PVA-Guard view, Figure 5.1d). We also compute and

update the validity measure of a Guard online each time its source visual-

ization (i.e., one on which the Guard is created) is updated to facilitate such

steering.

5.2.2 Progressive Visualization

Visualization in PVA systems is required to be scalable and effectively encode

uncertainty [62]. We chose to use two visualization techniques from litera-

ture: gradient plots [35] for univariate visualization and heatmaps with the

Value-Suppressing Uncertainty Palettes (VSUP) [36] for bivariate visualiza-
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tion. Both visualization techniques can provide perceptually effective ways

to encode uncertainty; gradient plots show the confidence intervals of values

as gradients and VSUPs represent uncertainty through the lightness and sat-

uration channels.

In ProReveal, people are allowed to select up to two fields that they want

to include in a new visualization. The type of a new visualization is de-

termined depending on the types of the selected fields: a gradient plot is

used for a single categorical field (C), a single quantitative field (Q), and

a pair consisting of a categorical field and a quantitative field (CQ), while

a heatmap is used for two fields of the same type (CC and QQ). Hereafter,

we use the letters C and Q before the name of fields and visualizations to

denote the types of the fields and the types of the selected fields for the visu-

alization (e.g., a C gradient plot for a gradient plot with a categorical field),

respectively.

Gradient Plots. A gradient plot encodes the confidence interval of a value

using opacity; 95% two-tailed t-confidence intervals are shown fully opaque,

while outside of the intervals, the opacity decays with respect to the cumu-

lative probability of an underlying t distribution [35] (Figure 5.1). We call

a gradient in a gradient plot a bar, and the center of a gradient (i.e., an esti-

mated value) the value of a bar.

In ProReveal, we display gradient plots horizontally for better scalability

on the number of displayable categories. C gradient plots show the number

of data items each category of aC field has.We sort the categories in descend-

ing order by their counts, so that the category with the most data items is

shown on the top. When C andQ fields are chosen, theQ field is aggregated

over the C field through an aggregation function (i.e., MEAN, SUM,MIN, or

MAX). Then, the result is visualized in a CQ gradient plot where the cate-
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gories are sorted by the value of the aggregatedQ field in descending order,

consistent with C gradient plots.

Q gradient plots bin a Q field and visualize the number of data items in

each bin, which can be seen as a histogram with uncertain counts. In con-

trast to C gradient plots, we do not sort the bins by their counts to maintain

the order of bins. The bin size is determined by an initial sample; we first

compute the range of a fixed number of sample values (i.e., 200) and divide

the range into a specific number of bins (i.e., 40). We adjust the number of

bins, if needed, to ensure the edges of the bins are nice numbers. When a

value that lies outside of the range is found during computation, the range

is stretched and new bins are created to encompass the value (as was done

in a previous study [62]).

Heatmaps. Heatmaps show the number of data items for each combination

of categories (for CC heatmaps) or bins (forQQ heatmaps) as a matrix (Fig-

ure 5.2). The color of a cell represents the estimated value (i.e., count) and

its standard error using a VSUP [36]. A VSUP encodes a value using the hue

of a color (i.e., through the viridis colormap [92]) and the uncertainty of the

value using the luminance and saturation of the color. CC heatmaps place

the categories of each C field on the horizontal and vertical axes respectively,

and similar toC andCQ gradient plots, the categories are sorted by the num-

ber of data items in each category. Instead of categories,QQ heatmaps create

bins for each Q field and show the count of data items in each 2D bin. For

both Q fields, we use the same procedure as Q gradient plots to determine

the number and size of bins.
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5.2.3 The ProReveal Interface

ProReveal employs a web-based user interface that enables progressive vi-

sual analytics with PVA-Guards (Figures 5.1 and 5.2). ProReveal supports

features that are essential in progressive data exploration, such as feedback

on progress, execution control, and prioritization (DR1). In this section, we

briefly describe the ProReveal interface and interactions. For more detail,

please refer to the videos in the supplementary materials. A self-contained

demonstration of ProReveal is also available on the Web (see Section 5.2.5).

The ProReveal interface consists of three parts: visualization lists, a main

view, and a PVA-Guard list.

Visualization Lists. In ProReveal, all visualizations are listed in one of the

two juxtaposed lists: one for completed visualizations on the left and the

other for ongoing visualizations on the right (Figure 5.1a). When an ongo-

ing visualization is completed, it moves to the completed visualization list.

Both lists display a summary of each visualization by presenting the fields

used in the visualization, including those for filters. On the ongoing visual-

ization list, a progress ring shows the progress, which becomes hiddenwhen

completed. People can pause, resume, and remove a visualization through

the buttons that appear when they hover the mouse cursor on a summary

(i.e., execution control).

Multiple visualizations can exist in the ongoing list, but only one visual-

ization can be computed at any moment. The visualization being computed

is marked with a play icon on its progress ring. By default, the topmost visu-

alization on the ongoing list is processed first to the end. But, one can reorder

the visualization on the ongoing list by drag-and-drop interaction. Alterna-
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tively, one can check an “Alternate” button to alternate computation between

visualizations.

Visualization Creator. To create a new visualization, one can open a visual-

ization creator by clicking on the “New Visualization” button above the vi-

sualization lists. The visualization creator shows the list of fields in a dataset

labelled by type (“abc” for categorical and “123” for quantitative). One can

choose up to two fields, and when one chooses one C field and one Q field

(i.e., for a CQ gradient plot), a list of available aggregate functions (i.e.,

MEAN, SUM, MIN, and MAX) appears below the field list. Based on the

types of the chosen fields, ProReveal automatically creates a new visualiza-

tion (DR1) and adds it to the top of the ongoing visualization list.

Main View. The main view (Figures 5.1b and 5.2) shows the currently se-

lected visualization. By default, a visualization is immediately updated each

time a new partial result is available. However, one can postpone the auto-

matic updates by unchecking the “Update automatically” button and man-

ually refresh the visualization through the “Sync” button (Figure 5.2a). Due

to a long-tail distribution of values, visualizations for large-scale data often

suffer from excessive white space. For C fields, we limit the number of cate-

gories visible to a fixed number (i.e., 50), and people can see all the categories

if they need. For Q fields, we allow people to change the granularity of bins

on the fly, but the minimum bin size is determined based on a small sample

(as mentioned in Section 5.2.2), and one cannot split the bins smaller than

that size.When one hovers themouse cursor over a visual element (i.e., a bar

or a cell) in the main view, a tooltip pops up, describing the corresponding

categories or intervals of the element, the estimated value (i.e., an aggregate

value for CQ gradient plots or a count otherwise) and its standard error, and

the number of data items found for the corresponding categories or intervals.
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Visualization

Gradient Plots Heatmaps
Field Types C Q CQ CC QQ

Value O O O O O
Rank O O
Range O O O O O

Comparative O O O O O
Power Law O O

Normal O
Linear O

Table 5.2: Types of applicable PVA-Guards for each field combination

PVA-GuardMenu.ThePVA-Guardmenu (Figure 5.2b),which can be opened

by clicking on a visual element of interest (hereafter, target), shows three

types of operations one can perform on the target: 1) creating a new visual-

ization only with the underlying data items of the target (i.e., filtering), 2)

leaving a Guard on the target, and 3) showing the underlying data items of

the target in a pop-up table. When the filter operation is chosen, the visual-

ization creator appears on the visualization, but in this case, a new visualiza-

tion is computed only for the data items of the target, not for all data items

in the dataset. The types of available Guards vary depending on the visual-

ization and the field types selected (Table 5.2), and only applicable Guards

are shown in the PVA-Guard menu.

PVA-Guard Panel. When a Guard type is chosen on the PVA-Guard menu,

the PVA-Guard panel appears (Figure 5.1c) below the main view, preview-

ing the Guard and its validity measure. 〈variable〉 of the Guard is set to

the target element on which the PVA-Guard menu was invoked. One may

want to set 〈constant〉 of the Guard; we design the interactions for setting

〈constant〉 according to the Guard type (see Section 5.2.4). 〈operator〉 of
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the Guard is automatically chosen based on the Guard type and 〈constant〉

(DR3). Finally, one can click on the “Leave a PVA-Guard” button in the panel

to activate the Guard.

PVA-Guard List. The PVA-Guard list provides an overview of created PVA-

Guards and their validity measures (DR4, Figure 5.1d). We decided not to

provide a history of a validity measure, since it is not meaningful and can

give the illusion that the measure is converging, especially for p values. We

color-encoded p values to facilitate interpretation; a p value is shown in green

when it is lower than a confidence level (i.e., α = 0.05), red when it is higher

than 0.5 (i.e., worse than a random guess), and yellow otherwise.When peo-

ple hover the cursor over a Guard, the linked visualization (i.e., the visual-

ization on which the Guard is created) is highlighted in yellow in the visu-

alization lists, and when people clicked a Guard, the linked visualization is

shown in the main view. Finally, people can export and download Guards in

a JSON format for future use.

5.2.4 PVA-Guards

As shown in Section 5.1.2, we identified what intermediate knowledge peo-

ple canderive fromour target visualizations (i.e., gradient plots andheatmaps)

based on previous literature [4, 97] (Table 5.3). Based on our identifica-

tion, we designed and implemented sevenGuards in ProReveal: Value, Rank,

Range, Comparative, Power Law, Normal, and Linear.

Value

One common task in a bar chart and a histogram is to read the value of a

specific category or interval. This task has different names in the literature,

such as Retrieve Value [4] or Identify Attribute [97]. In ProReveal, such tasks
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correspond to reading the value of a bar on a gradient plot or a cell on a

heatmap. A Value Guard allows people to present intermediate knowledge

obtained while performing those tasks: the value of a bar or a cell is less or

greater than a specific constant (e.g., Price(Apple) ≤ $2).

• 〈variable〉:= value of a bar | value of a cell (e.g., Price(Apple))

• 〈operator〉:= ≥ | ≤

• 〈constant〉:= a number (e.g., $2)

Interaction.When the Value Guard is selected on the PVA-Guard menu, an

orange constant bar appears on the visualization space (for a gradient plot)

or the legend (for a heatmap), showing the value of 〈constant〉. People can

drag the constant bar left or right to change the value. By default, 〈constant〉

is set to the current value of 〈variable〉, and 〈operator〉 is set to≤. 〈operator〉

is automatically chosen by comparing the value of 〈variable〉 and 〈constant〉

when the Guard is created (DR3).

Rank

A Rank Guard indicates that the rank of a category is higher or lower than

a threshold (e.g., Rank(Price(Apple)) ≤ 10). The Rank Guard is related to

tasks of Find Extremum and Sort [4]. The Rank Guard is available in a C or

CQ gradient plot where the target rank can be directly specified as a hori-

zontal line on the visualization.

• 〈variable〉:= rank of a bar (e.g., Rank(Price(Apple)))

• 〈operator〉:= > | ≤

• 〈constant〉:= a rank (e.g., 10)
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Interaction.An orange horizontal bar (i.e., the rank bar) appears on the gra-

dient plot, showing the rank of 〈constant〉. People can drag the rank bar up

and down to set the desired rank. By default, 〈constant〉 is set to the current

rank of 〈variable〉, and 〈operator〉 is set to≤. 〈operator〉 is automatically cho-

sen by comparing the rank of 〈variable〉 and 〈constant〉 when the Guard is

created (DR3).

Range

A RangeGuard is a two-sided version of a ValueGuard. The RangeGuard in-

dicates that the value of a bar or a cell is in a certain range (e.g.,Price(Apple) ∈

[$1, $3]).WithDR3,we only allow symmetric rangeswhose center is at 〈variable〉

when the Guard is created, preventing people from choosing an arbitrary

range. Therefore, the Range Guard can be seen as representing acceptable

bounds that 〈variable〉 lies on at the end.

• 〈variable〉:= value of a bar | value of a cell (e.g., Price(Apple))

• 〈operator〉:= ∈

• 〈constant〉:= a range whose center is at 〈variable〉 (e.g., [$1, $3])

Interaction. When the Range Guard is chosen, a gray brush appears on the

visualization space (for a gradient plot) or the legend (for a heatmap), show-

ing the range of 〈constant〉. The shape of the brush depends on the visu-

alization type (i.e., rectangular-shape for a gradient plot and pie-shape for

the heatmap legend). People can drag the left or right edge of the brush

to change the range. The center of the range stays at the current value of

〈variable〉; as 〈variable〉 is progressively updated, the center of the range

moves, maintaining its width. By default, 〈constant〉 is set to the 98% confi-

dence interval of 〈variable〉.
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Comparative

A Comparative Guard allows people to safeguard comparison between two

values, a common task performed on visualization [97]. The Comparative

Guard takes and compares two variables of the same type (e.g., values of

two bars or two cells), e.g., Price(Melon) ≥ Price(Apple).

• 〈variable1〉:= value of a bar | value of a cell (e.g., Price(Melon))

• 〈operator〉:= ≥ | ≤

• 〈variable2〉:= value of a bar | value of a cell (e.g., Price(Apple))

Interaction. 〈variable1〉 is set to the element (i.e., a bar or a cell) onwhich the

PVA-Guard menu was invoked with click, while people can right-click on a

bar or a cell to set 〈variable2〉. ProReveal automatically chooses 〈operator〉

by comparing the value of 〈variable1〉 and 〈variable2〉 when the Guard is

created (DR3).

Power Law and Normal

Identifying the distribution of values is another important task [4, 97]. Power

Law and Normal Guards (hereafter, distributive Guards) present intermedi-

ate knowledge that the distribution of values follows a power law or normal

distribution, respectively, e.g., Prices of Fruit ∼ N (µ, σ2). The Power Law

Guard is available for both C and Q gradient plots, but the Normal Guard is

only available forQ gradient plots, since a normal distribution requires quan-

titative values for its domain. Following DR3, the parameters (e.g., µ and σ

for a normal distribution) of the distributive Guards are automatically fit to

the data at the moment of creation. Moreover, we chose to update the pa-

rameters to fit the most recent data, even after the Guard is created, since in
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exploratory analysis people often want to identify the shape of distribution

rather than check if the distribution has specific parameters.

• 〈variable〉:= values of bars (e.g., Prices of Fruit)

• 〈operator〉:= ∼

• 〈constant〉:= PowerLaw(k, α) | N (µ, σ2)

Interaction. For consistency, people have to open the PVA-Guard menu first

by clicking a bar to create the distributive Guards, even though those Guards

are not for a single bar but for the whole gradient plot. Then, a dotted curve

appears on the gradient plot (Figure 5.1b), showing the current distribution

(i.e., 〈constant〉). As the gradient plot is updated progressively, the param-

eters are automatically changed to fit the most recent result.

Linear

Designed for tasks of identifying the correlation between two quantitative

fields [4, 97], a Linear Guard indicates that two Q fields are linearly cor-

related, e.g., Prices of Fruit ∝ Sizes of Fruit. The Linear Guard is only

available for QQ heatmaps, and the values of the second Q field is linearly

modeled by the first one.

• 〈variable1〉:= a Q field (e.g., Prices of Fruit)

• 〈operator〉:= ∝

• 〈variable2〉:= a Q field (e.g., Sizes of Fruit)

Interaction. Similar to distributiveGuards, people open the PVA-Guardmenu

first by clicking any cell on a heatmap to create a LinearGuard. Then, a dot-

ted line appears on the heatmap, showing the fitting line. As the heatmap
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is updated progressively, the parameters of linear fitting (i.e., the slope and

the intercept) are automatically changed to fit the most recent result.

5.2.5 Estimation and Implementation

For progressive computation, ProReveal builds uniform samples of a dataset

without replacement and processes the samples one by one to yield pro-

gressive results. For each sample, we compute the count (for both C and

Q fields), sum, and squared sum (for Q fields) of data values and accumu-

late the numbers over samples. For visualizations that use COUNT, MEAN,

or SUM aggregation functions, we statistically estimate the target value and

its standard error using the accumulated statistics. For MIN and MAX ag-

gregation functions, which are more sensitive to outliers, we only show the

MIN or MAX value we found so far. For scalable computation, ProReveal

processes large-scale data on a distributed computing engine, Apache Spark

[138], with a similar architecture to a previous study [62]. Please refer to the

videos in the supplementary materials to check out our system running on

about 1.7 billion entries of the GAIA dataset [28, 75].

ProReveal employs four types of validity measures (Table 5.1): p val-

ues for Value, Rank, Range, and Comparative, quality (e.g., Kolmogorov-

Smirnov statistic) for Power Law and Normal, error (e.g., root mean square

error) for Linear, and truth values for Guards on visualizations with MIN

and MAX aggregation functions. The validity measures are computed us-

ing the sample statistics; therefore, if a visualization is paused, the Guards

left on it are not updated. For the progressive computation of uncertainty

and validity measures, we assumed that the number of rows in the dataset

is known. For more detail, please refer to our supplementary materials.
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Themetadata of fields, such as type, are conjectured using the fixed num-

ber (i.e., 200) of data items, as mentioned in Section 5.2.2. However, people

can specify the metadata in a separate file, such as the range or desired bin

size of a Q field. The ProReveal interface is implemented using TypeScript

[125],D3.js [24], andAngular [9]. The source codes of the interface andback-

end are available at https://github.com/proreveal. An interactive demo

is also available at https://proreveal.github.io/ProReveal.

5.3 Evaluation

Weconducted a user study to understand if andhowpeople use PVA-Guards

and to evaluate the usability of ProReveal.

5.3.1 Study Design

Participants. We recruited 14 participants (3 females and 11 males) from a

university, ranging in ages from 20 to 31 years. We screened the participants

through a questionnaire to ensure that 1) they were familiar with using and

interpreting common visualizations (e.g., bar charts) and 2) took at least

one statistics class with understanding of statistical hypothesis testing and

confidence intervals. They received about US$20 for their participation.

Tasks and Datasets. We designed two tasks to evaluate different aspects of

data explorationwithGuards. FromTask 1, wewanted to assess the usability

of our interface and interactions for creating Guards. We provided the par-

ticipants with a structured form of interaction sequences (i.e., exploration

recipes). The participants were asked to follow five exploration recipes and

answer the question at the end of each recipe as accurately as possible in

three minutes.
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Consisting of three steps and one question, an exploration recipe de-

scribes interactions occurring in analysis where a participant creates a vi-

sualization (VIS1 step), leaves a Guard on a finding from the visualization

(Guard step), creates another visualization by applying a filter from the first

one (VIS2 step), and answers a specific data-driven question. In the VIS1

step, participants were asked to create a visualization by choosing one or

two fields in the visualization creator. Then, in the Guard step, they were in-

structed tomake a Guard on the visualization; the parameters for the Guard,

such as type, variable, and constant, were described in the recipe, if needed.

Next, the participants were asked to create another visualization (VIS2) by

selecting a specific category or interval on the first visualization. Finally, they

were asked to identify the category or interval with the most data items by

answering questions with five choices. If the visualization was not certain

enough, the participants needed to wait for a clearer answer.

We designed five templates for the exploration recipes (Table 5.4) that

cover five types of Guards (Value, Rank, Range, Comparative, and Linear)

and five field combinations (C,Q, CQ, CC, andQQ). To control the difficulty,

all templates use the same number of fields in total (i.e., three in VIS1 and

VIS2). Based on the templates, we created 10 exploration recipes, R1–R5with

a weather dataset for a tutorial and R6-R10 with a birdstrike dataset for Task

1.

With Task 2, we wanted to investigate how participants use ProReveal in

progressive data exploration and how they employ Guards when they are

not explicitly instructed to use them. We asked participants to explore the

given data to find meaningful and trustworthy insights that they want to

share with colleagues, considering themselves data scientists, which is sim-

ilar to the approach used in the evaluation of previous data exploration sys-
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Name VIS1 Guard VIS2

R1, R6 C Rank QQ
R2, R7 Q Range CC
R3, R8 CQ Comparative C
R4, R9 CC Value Q
R5, R10 QQ Linear C

Table 5.4: Five templates of exploration recipes

tems [63, 134]. To limit the potential effect of datasets, we used two different

datasets; seven participants explored a movie dataset and the other seven

explored a Korean SAT dataset. After the 10-minute exploration, we asked

them to briefly explain the visualizations they created to check if they created

the visualizations as they intended.

Both themovie and SATdatasets had sixC fields and sixQfields.We used

four datasets: a weather dataset (2,922 rows and 8 fields) [128] for tutorial

videos, quizzes after each video, and exercise recipes; for Task 1, a birdstrike

dataset (9,987 rows and 15 fields) [128]; for Task 2, a movie dataset (10,029

rows and 12 fields) [121] and a Korean SAT dataset (14,098 rows and 12

fields). For all the datasets, we randomly shuffled the order of rows to limit

the effect of potential bias.

Latency Condition. A body of research exists on how the latency of interac-

tive systems can affect user behavior [98, 99]. To control the latency of ProRe-

veal, we simulated the latency of each response by drawing a random num-

ber from a normal distribution with a mean of 3,000 ms and a standard de-

viation of 1,000 ms. The mean and standard deviation of latency were based

on a benchmark of a scalable visualization system [62] and were longer than

those used in previous studies (e.g., 600 ms and 1,200 ms [139], and 500 ms

and 2,500ms on average [135]). The first response of a visualizationwas pro-
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vided faster (i.e., in 300 ms), which was also feasible in practice [62]. Each

response covered 1% of data, so it took fiveminutes on average (i.e., 3,000ms

× 100 responses) to finish a visualization if it was the only one being com-

puted in the system. In the experiment, progressive computation was done

on a web browser, instead of a backend, to control the latency and avoid un-

expected delay due to computation on distributed nodes.

Apparatus. Participants were seated in front of a desktop with two 24-inch

monitors at a resolution of 1920 × 1080. The ProReveal interface was shown

on the left monitor (hereafter, Interface), while a web app for the user study

was presented on the right monitor (hereafter, Presenter). Presenter man-

aged experimental sessions, such as playing tutorial videos, presenting ex-

ploration recipes one by one, and receiving answers from the participants.

Presenter remotely controlled Interface; the participants could begin explor-

ing the given data on Interface with the data loaded when they were ready.

Both Interface and Presenter logged all important interactions for analysis.

Procedure. After signing a consent form, participants participated in a tu-

torial session during which they watched four videos played on Presenter:

one introductory video about progressive visual analytics, two videos about

ProReveal and uncertain visualizations, and the last one about Guards. Af-

ter watching each video, they took quick quizzes and practiced what they

learned from the video on Interface. The entire tutorial took approximately

35 minutes. Then, the participants tried five exercise recipes (i.e., R1-R5),

displayed one by one on Presenter. Since it took about five minutes for one

visualization to finish, they were not able to see a complete result during the

session. After finishing the exercise recipes, participants carried out Task 1

(i.e., R6-R10) without any support from the experimenter. The order of the

recipes in Task 1 was randomized.
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After an optional three-minute break, the participants were introduced

to Task 2. The interface was configured to initially show one univariate vi-

sualization for each field in a dataset to provide a starting point for explo-

ration. After the 10-minute exploration, participants reviewed their visual-

izations one by one with the experimenter. The experimenter transcribed 1)

why they created each visualization and 2) what they found from the vi-

sualization. After completing both tasks, participants responded to an SUS

(System Usability Scale) questionnaire [27] and described their experience

with ProReveal. The entire session took about 80 minutes.

5.3.2 Results

We report the results of our user study in three parts: the accuracy and time

in Task 1, the number of insights found in Task 2, and qualitative feedback

from the participants.

Task 1. Out of 70 (5 recipes × 14 participants), participants chose correct

answers except for only one case where the participant hastily chose one of

two competing cells, overlooking their uncertainty.We also checkedwhether

the participants correctly created Guards as in the recipes. Due to the limi-

tation of drag and drop interactions in accuracy, we asked the participants

to set a constant as closely as possible to a specific value or a certain range

for Value and Rank Guards, and we permitted 5% margin for the constants

of those Guards. We found the participants correctly created Guards in all

70 recipes. Participants spent on average 5.71 (σ = 2.61) seconds on creating

the first visualization, 22.56 (σ = 11.37) seconds on creating a Guard, 16.75

(σ = 5.67) seconds on filtering and making the second visualization, and

85.43 (σ = 30.75) seconds on answering the question of recipes.
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Seven participants voluntarily created additional Guards (26 out of 70

recipes) to confirm their answers even though they were not asked to do

so. They mostly (in 20 recipes) created Comparative Guards to choose one

between the top two, sincewe asked them to choose the answerwith themost

data items. Other Guards additionally used in Task 1 were Rank (8 recipes),

Value (1), and Power Law (1).

Task 2. On average, the participants created 7.64 (σ = 2.21) visualizations

except the initial univariate visualizations given by default. From those vi-

sualizations, they found 4.77 (σ = 1.79) insights by leaving 3.29 (σ = 2.40)

Guards on the visualizations. They used the Linear Guard the most (22

times), followed by Rank (11 times), Comparative (9), Range (2), and Normal

(2). Value and Power Law Guards were not used in Task 2. We did not find

any significant difference between the datasets (i.e., movie and SAT) on the

number of visualizations created, insights reported, andGuards created (ps >

.05, ns).

Subjective Feedback and Interview.ProReveal received an average SUS score

of 78.39 (σ = 10.99), which lies in between “Good” and “Excellent” adjective

ratings [15]. Through an interview, we surveyed major strategies our partic-

ipants developed to decide a correct answer. Observing a clear gap between

confidence intervals was the most frequently used one (8 participants), and

other responses were waiting until a specific amount of data was processed

(7), using Guards (6), waiting as long as possible (2), and checking the sta-

bility of visualization over time (2).

In the interview, twoparticipants also suggested new types of PVA-Guards

that would be helpful for their exploration. P5 suggested it would be useful

if he could leave a Guard on multiple visual elements at once (e.g., three

bars), which calls for a new type of variable, that is, a group variable. With
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RankGuards, such a group variable can be used to safeguard the knowledge

that a group of categories are on the top (i.e., in the top 3). In addition, P7

suggested a Guard that tests the significance of linear regression would be

helpful in his daily analysis, thus complementing Linear Guards.

5.4 Discussion

Our study results suggest that participants could understand the concept of

Guards and incorporate Guards in their data exploration through the ProRe-

veal interface. Participants could follow all visualization recipes and choose

correct answers except for only one case after about 30-minute training, and

seven participants voluntarily used Guards in Task 1. In addition, as the av-

erage SUS score suggests, they positively rated the ProReveal interface.

In this section, based on our results and observations aswell as the partic-

ipants’ feedback, we reflect on how participants used Guards in progressive

data exploration. We then discuss the limitations of our lab study and future

research directions.

Benefits of PVA-Guards and ProReveal. In Task 1, six participants reported

that usingGuardswas theirmajor strategy to dealwith uncertainty. P8 stated,

“The major benefit of Guards was the feedback onmy intermediate findings from pro-

gressive visualization.” In addition, P11 noted, “Guards helped me to build trust

on my hypotheses and proceed to subsequent analysis,” which advocates the ben-

efit of PVA-Guards.

The PVA-Guard list of ProReveal served as an overview of uncertain in-

termediate knowledge, which seems to be helpful in recalling the context of

safeguarded knowledge. For example, P4 said “I could be aware of the over-

all progress, because [the PVA-Guard list] persistently presents my Guards. I left
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Guards on interesting but uncertain knowledge, so that they are visible on the screen,

and I continued to explore data.” In addition, P11 stated, “I can resume analysis

on the visualizations (on which the Guards are left), because I captured them as

Guards, which, I believe, can speed up the analysis,” indicating she used Guards

to recall the context of previous findings and resume the analysis.

Diversity in Uncertainty Interpretation. Our study revealed that partici-

pants employed different strategies to interpret the uncertainty of a visual-

ization. Eight (out of 14) participants checked whether there was a clear gap

in confidence intervals between two competing bars, but a “clear” gap is still

arbitrary and subject to bias. Waiting for a specific amount of data being pro-

cessed (seven out of 14) was the second most frequently used strategy, but

it does not guarantee right decisions and can also misguide decisions. The

amount of data participants thought enough to make decisions varied (e.g.,

20%, 25%, or 33%). Considering the potential threats resulting from such

heterogeneity in uncertainty interpretation, we believe PVA-Guards can be a

systematic means for preventing people from making incorrect, hasty deci-

sions and validating their correctness even after wrong decisions are made.

Unexpected Use of the PVA-Guard Panel. We observed that participants

sometimes used the PVA-Guard panel (Figure 5.1d) to bolster confidence on

their hypotheses by just checking uncertainty measures (e.g., p values) from

a preview of a Guard without actually creating it. Participants opened the

PVA-Guard panel (by choosing a Guard type on the PVA-Guard menu) 4.93

times (σ = 3.05) on average in Task 2, but only 3.29 (σ = 2.40) Guards were

actually created. This means that the participants closed the panel without

creating a Guard in approximately 33% of cases. P3 said, “I used the panel just

to check if the popularity field is linearly related to the score field, since I wanted to
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know how popularity is calculated,” which indicates that he appropriated the

PVA-Guard panel to understand the data.

Concerns on the Use of p Values. We used p values as validity measures,

but this should be done with care in future designs. The benefits of p values

would be their interpretability and familiarity, but we found that they can

give an illusion of certainty. P2 stated, “I was surprised that p values changemore

than I expected. I am not sure I can absolutely trust p values.” Similarly, P6 noted,

“At first, I tried to choose an answer as fast as possible, but after I saw fluctuation

in p values, I became more cautious.” Although the interface would be more

complicated, providing control overmultiple hypothesis testing can alleviate

this problem [140].

Limitations and Future Work. In our study, participants explored data that

they have not seen before, although we used datasets that they were familiar

with (i.e., movie and SAT). This might be a reason why participants pre-

ferred Guards with relative values (i.e., Linear, Rank, and Comparative) in

Task 2 to Guards with absolute values (i.e., Value and Range) that require

deeper understanding of the data domain.

We aimed to evaluate the usability of ProReveal in a lab study. Therefore,

our latency conditions such as the latency of a visualization (i.e., 3 seconds

on average) and the time taken to complete a visualization (i.e., 5 minutes

on average) were shorter than ones common in practice. We are interested in

deploying our system and investigating how Guards can be used to validate

the conclusions from the exploration of real-world data where visualizations

take a few hours or a day to finish. In this case, a session can span a few days,

so it would be important to allow people to recall and continue the previous

analysis where PVA-Guards can be possibly used. Furthermore, it would be

also interesting to explore a different combination of design choices from
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oneswemade. For example, wemaywant to employmore active approaches

(e.g., alert an analyst) for the exploration of large-scale data since one can be

offline when a violation happens due to the length of the session.

Guards can be logically combined to express higher-level knowledge.

However, since the ten low-level tasks [4] mainly focus on analytic activities

on multidimensional tabular datasets, our Guards are not complete enough

to represent general knowledge gained from data exploration. However, if

we have a solid task taxonomy for a certain type of datasets, for example, a

task taxonomy for graph visualization [72], we can apply a similar approach

to ours to build a new set of Guards. Finally, we designed the interactions for

Guards on two visualization types (i.e., gradient plots and heatmaps). We

chose the two visualizations because they can visualize univariate or bivari-

ate results with a proven capability of showing uncertainty. In the future,

it would be interesting to extend Guards to a wider range of visualizations

such as progressive parallel coordinates [109].

5.5 Summary

Despite the benefits of progressive visual analytics (PVA), managing the

trustworthiness of intermediate outcomes has been regarded as a core con-

cern when applying PVA to a wider range of scenarios. To tackle this prob-

lem, we present a novel concept of Progressive Visual Analytics with Safe-

guards and a proof-of-concept system, ProReveal, which incorporates seven

types of PVA-Guards. ProReveal allows people to present their uncertain

intermediate knowledge as PVA-Guards on visualizations during progres-

sive data exploration. Then, ProReveal validates PVA-Guards online, provid-

ing their validity measures as an estimate of uncertainty. The results of our
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user study were promising; we found that people can utilize this concept to

gain trust in the intermediate knowledge and steer their exploration.We also

found a potential benefit of PVA-Guards—a means of achieving consistency

in progressive data exploration to alleviate the heterogeneity in uncertainty

interpretation. We believe our concept can be extended to a broader range of

tasks, datasets, and visualizations in the near future, serving as an effective

means of achieving trustworthiness in PVA.
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Chapter 6

Discussion

In this chapter, we discuss lessons learned from the process of seeking an-

swers to the research questions and the limitations of this dissertation.

6.1 Lessons Learned

6.1.1 Challenges in Realizing “Strict” Progressiveness

In Section 2.1.1, we covered three definitions of PVA with different levels of

strictness. For example, the definition given by Stolper et al. [120] does not

require a guarantee on latency, which may be the “loosest” definition, while

the definitionmade in the Dagstuhl seminar [44] would be the strictest since

it requires the response time of computation to be bounded. Such a latency-

guaranteed progressive system would be ideal from the users’ perspective.

However, through the course of this research, we identified three real-world

hurdles to achieving such strict progressiveness as follows.

First, the parameters of a progressive system are often indirect estimators

of the system latency. In SwiftTuna and ProReveal, the number of rows pro-

cessed in each iteration was an important parameter that users can tune to

achieve a certain level of latency. PANENE has a few parameters, such as the
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number of operations allowed in each iteration (ops) and the fraction of time

used for insertion tasks and rebuilding tasks (τ), to strike a balance between

latency and accuracy. Although these parameters can be seen as estimators

for the system latency, they are not enough to predict the actual latency of

a system. For example, even though one finds a reasonable combination of

parameters to achieve a specific level of latency, the combination would not

work for different datasets or hardware settings. In this sense, the parame-

ters should be tuned considering target data and hardware or dynamically

adjusted during executionmonitoring the actual latency of a system if possi-

ble. One possible remedy to this problem is the Time Predictor, presented by

Fekete and Primet [45], which dynamically infers the number of operations

that an algorithm executes per second.

Second, the throughput of a progressive system can be severely degraded

to achieve progressiveness. Providing intermediate outcomes during com-

putation imposes an extra cost that often involves input and output (IO). In-

deed, in the performance benchmark of SwiftTuna, we found that processing

ten times more rows in an iteration only doubles the average response time

of the system, which is a 5x speedup. The reason may be that even though

we use smaller blocks, there is fixed overhead, such as a delay from sending

partial responses to a client, so that the system latency cannot be reduced be-

low the overhead. For better throughput, it would be possible to allow users

to dynamically adjust the progressiveness required for the system so that, in

an extreme case, they can completely turn off progressive computation for

the highest throughput.

Third, to support progressive analytics, every component in its compu-

tation pipeline must be progressive, which is a strong requirement. As an

example, let us suppose a task where an analyst wants to visualize high-
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dimensional data into a heatmap using Responsive t-SNE progressively. The

computation pipeline for this task consists of four stages: 1) reading data

from disks, 2) embedding the data into the 2D space, 3) measuring the den-

sity of data points at each cell in a grid on the 2D space, and 4) drawing

a heatmap by interpolating the densities between the cells. All four stages

should be done progressively, which is possible in this case. However, in

practice, there can be a sequential computation that can block the whole

pipeline. This problem calls for an ecosystemof progressive components that

span all layers of visual analytics from the lowest layer (e.g., reading from a

disk) to the highest layer (e.g., visualization).

6.1.2 Visualization in Progressive Systems

Visualization in PVA should be 1) scalable and 2) capable of representing the

uncertainty of data. In SwiftTuna and ProReveal, we chose to use perceptu-

ally effective visualization techniques: gradient plots [35] for univariate vi-

sualization and heatmaps with the Value-Suppressing Uncertainty Palettes

(VSUP) [36] for bivariate visualization. Both visualization techniques can

encode uncertainty; gradient plots show the confidence intervals of values as

gradients and VSUPs represent uncertainty through the lightness and satu-

ration channels. However, evenwith these techniques, we had to design user

interactions for better scalability, such as zooming and brushing.We focused

on univariate or bivariate visualizations for tabular datasets. However, for

other types of data, we found that very few visualization techniques satisfy

both requirements, and developing such visualization techniques would be

a promising future direction.

134



6.1.3 Trustworthiness and Accessibility, Two New Considerations in
Visual Analytics

We put forward trustworthiness and accessibility as two new considerations

for visual analytics with exploding data volumes. Measuring the trustwor-

thiness of progressive results has been considered as one of themajor hurdles

of PVA [8, 88]. With the increasing size and complexity of data, we believe

it will be more prevalent to make decisions based on uncertain results. De-

signing our concept, PVA with Safeguards, we discussed how PVA-Guards

can be used to represent, verify, and correct such uncertain findings. Fur-

ther investigating this concept, we believe it would be interesting to explore

the opportunities in design choices different from the ones we made in the

ProReveal design (Section 5.1.3).

The other consideration that we want to emphasize is the accessibility

of intermediate results. Previously, the length of a visual analytics session

is usually up to humans; users can pause or stop analysis when they want.

However, in PVA sessions, computation is not completed due to the sheer

size of data or the complexity of algorithms even after the users left the ses-

sions. To connect the users and systems, we envision a PVA system that al-

lows users to access intermediate results ubiquitously, for example, by pro-

viding mobile interfaces. With PVA-Guards, the system may notify users

when there are changes in the validity of intermediate knowledge.

6.2 Limitations

Wewould like tomention the limitations of the three studies included in this

dissertation. For all three systems and algorithms,we introduced parameters

that can control the computation time of an iteration, such as the number of
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rows in a batch in ProReveal and the number of allowed operations in an iter-

ation (ops) in PANENE. These parameters should be adjusted depending on

the amount of available computational resources and datasets dynamically

if possible.

SwiftTuna and ProReveal do not resort to a preprocessing scheme, such

as data cubes, but work on data chunks (i.e., blocks). Usually, data chunking

does not cost verymuch and ismore effective for cold-start analysis than pre-

processing schemes. However, if data is skewed, creating sequential chunks

would introduce sampling bias, so randomization is needed, for example, by

shuffling the order of chunks or rows.

In the benchmark of PANENE, we used datasets with 100 dimensions. To

handle a huge number of dimensions, one can apply a linear dimensionality

reduction method first (e.g., PCA [133]) to reduce the number of dimen-

sions to a reasonable number. PANENE has linear loops inside, for example,

to split a node in k-d trees. These loops are O(N), but if data is too large,

they can eventually block the algorithm. We leave separating the execution

of those loops as future work.

In ProReveal, we design and implement seven PVA-Guards on two visu-

alization techniques (i.e., gradient plots andheatmaps).However, our imple-

mentation can be extended to different types of knowledge or visualization

techniques. Furthermore, although we present initial user study results, we

believe that evaluating our concept through a deployment study is necessary

and can be done soon.
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Chapter 7

Conclusion

Concluding the dissertation, this chapter reviews the contributions that we

made and presents future research agendas for PVA.

7.1 Thesis Contributions Revisited

This dissertation endeavored to support the thesis statement (Well-designed

progressive systems and algorithms can overcome the scalability and relia-

bility challenges of visual analytics universal in modern data science, en-

abling the responsive and trustworthy exploration of large-scale multidi-

mensional data.), and present the outcomes of three research projects with

each answering one of our research questions.

The first research question was “Vertical Scalability: how do we en-

able interactive visual exploration of large-scale data with scalability in

both data processing and visualization?” As an answer to the question, we

present SwiftTuna, an interactive system that streamlines the visual informa-

tion seeking process on large-scale multidimensional data. We design an in-

teractive interface for multidimensional data exploration, seeking the scala-

bility of visualization through interaction techniques, such asOverview+Detail
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and zooming as well as introducing tailed charts. To support responsive

querying on large-scale data, SwiftTuna leverages an incremental process-

ing approach and provides immediate low-fidelity responses (i.e., prompt

responses) as well as delayed high-fidelity responses (i.e., incremental re-

sponses). For scalability in data processing, we exploit an in-memory com-

puting engine, Apache Spark [137], to achieve both scalability and perfor-

mancewithout buildingprecomputeddata structures.Our performance bench-

markdemonstrates that SwiftTuna can respond to various visualization queries

on a real-world datasetwith four billion recordswhile preserving the latency

between incremental responses within a few seconds.

The second research question was “Horizontal Scalability: how do we

responsively embed and visualize high-dimensional data on a 2D space

without long initial computationdelays?”To address the question,wepresent

a progressive algorithm, PANENE, for approximate k-nearest neighbor in-

dexing and querying. PANENE conforms to the most strict definition of pro-

gressive computation, i.e., the bounded time between consecutive responses,

which contrasts itself with previous online algorithms. PANENE can also in-

crementally build and maintain a cache data structure, a KNN lookup table,

to enable constant-time lookups for KNN queries. With the KNN lookup ta-

ble, we demonstrated three progressive applications of PANENE, such as

regression, density estimation, and Responsive t-SNE. Our benchmarks re-

vealed that PANENE and the KNN lookup table can guarantee the insertion

time in each iteration under a specified threshold as well as providing tun-

able parameters for the trade-off between latency and accuracy.

The third research question was “Knowledge Trustworthiness: how do

we improve the trustworthiness of intermediate knowledge gained from

progressive visual analytics?” The importance of providing trustworthy re-
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sults has been recognized in the PVA community [8, 88]. Our approach is

based on a novel concept, ProgressiveVisualAnalyticswith Safeguards,where

we allow people to leave PVA-Guards on uncertain intermediate knowledge

that should be verified later. We also present ProReveal, a proof-of-concept

PVA system that supports seven safeguards that we derived based on pre-

vious task taxonomies. Our user study with 14 participants revealed that

people voluntarily employed PVA-Guards to safeguard their findings, and

ProReveal’s PVA-Guard view provides an overview of uncertain intermedi-

ate knowledge. We also found heterogeneity in uncertainty interpretation

and believe our new concept can also offer better consistency in PVA.

7.2 Future Research Agenda

Inspired by the lessons learned, we present promising future research agen-

das for PVA.

7.2.1 Exploring the Design Space of Progressive Visual Analytics
with Safeguards

In Chapter 5, we presented Progressive Visual Analytics with Safeguards

anddesigned aproof-of-concept system, ProReveal. ProRevealwas built based

on our choices of design considerations; for example, it supports explicit

knowledge representation with passive approaches to violations. However,

we can see the potential of other design choices. For example, if it takes

very long to validate PVA-Guards, it would be more useful to take active

approaches (e.g., alert an analyst) for handling violations. Another example

is to take a more implicit approach to elicit knowledge from visualization,

for example, by predicting the knowledge that users can gather from a spe-

cific visualization. A sophisticated system would automatically recommend

139



possible intermediate knowledge from progressive visualization and allow

users to confirm and safeguard the knowledge simply.

In addition to investigating various combinations of design choices for

PVA with Safeguards, it would be also interesting to design PVA-Guards for

a different set fo visualizations. For example, on progressive parallel coordi-

nates [109], one may want to leave a safeguard on the correlation coefficient

between two dimensions.

7.2.2 Alleviating Performance Degradation Resulting from
Progressive Outputs

Asour benchmarks demonstrated, reporting progressive outputs during com-

putation degrades the throughput of a system. One exciting direction for fu-

ture research is to find a way to minimize such performance degradation.

A system can allow users to dynamically adjust the required response time

according to the stage of analysis; for example, one wants to see ongoing re-

sults more frequently for the early stage of analysis but lessens the latency

requirement after hypotheses are made. PVA-Guards can be used in such a

scenario by alerting analysts only when PVA-Guards are invalidated instead

of giving them intermediate outcomes every a few seconds. Similarly, we can

imagine a system that can report intermediate results when it is focused (i.e.,

when analysts get back to the analysis).

7.2.3 Enhancing the Accessibility of Progressive Results

Validating the findings from PVA sessions on the entire data can take a long

time and persist even after analysts left the sessions. In order to help analysts

be aware of the progress of the validation process, it is essential to make the

process accessible, for example, through mobile interfaces. Beyond merely
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showing the progress, such interfaces can serve as a means of steering the

validation process. For example, when intermediate knowledge turned out

to be wrong, one can remotely refine the knowledge and re-run the valida-

tion process. Mobile devices can be insufficient to perform full-featured vi-

sual analytics, butwe see opportunities to leverage them to alleviate analysts’

burden of monitoring the validation process.

7.2.4 Enriching the Ecosystem for Progressive Visual Analytics

Progressive systems require every stage in computation pipelines, such as

loading, processing, and visualizing data, to be progressive. Although there

have been attempts tomodularize PVA components [45], most contributions

to PVA are still made in a fragmentized manner. One important research

direction is to consolidate such contributions and enrich an ecosystem for

PVA with reusable analytic components consisting of progressive modules

that span all layers from the lowest layer (e.g., loading data from a disk) to

the highest layer (e.g., visualization and interaction).

7.3 Final Remarks

Throughout this dissertation, we designed and evaluated systems and algo-

rithms to interactwith large-scale data bydeveloping SwiftTuna andPANENE

for responsive visualization andProReveal for trustworthy visual exploration.

Since its introduction, visualization has served a crucial role in data analysis,

bridging the gap between humans and computers. With the unprecedent-

edly increasing size of data and analytic models, it will become ever more

critical to empower humans to understand and interact with data.

Data sizes matter.
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국문초록

현대데이터사이언스에서인터랙티브한시각화를통해데이터를이해하는것

은 필수적인 분석 방법 중 하나이다. 그러나, 최근 데이터의 크기가 폭발적으로

증가하면서 데이터 크기로 인해 발생하는 지연 시간이 인터랙티브한 시각적 분

석에큰걸림돌이되었다.본연구에서는이러한확장성문제를해결하기위해점

진적 시각적 분석(Progressive Visual Analytics)을 지원하는 일련의 시스템을

디자인하고 개발한다. 이러한 점진적 시각적 분석 시스템은 데이터 처리가 완전

히끝나지않더라도중간분석결과를사용자에게제공함으로써데이터의크기로

인해발생하는지연시간문제를완화할수있다.

첫째로,수십억건의행을가지는데이터를시각적으로탐색할수있는 Swift-

Tuna 시스템을 제안한다. 데이터 처리 및 시각적 표현의 확장성을 목표로 개발

된 이 시스템은, 약 40억 건의 행을 가진 데이터에 대한 시각화를 전처리 없이

수초마다업데이트할수있는것으로나타났다.둘째로,근사적 k-최근접점(Ap-

proximate k-Nearest Neighbor) 문제를 점진적으로 계산하는 PANENE 알고

리즘을 제안한다. 근사적 k-최근접점 문제는 여러 기계 학습 기법에서 쓰임에도

불구하고초기계산시간이길어서인터랙티브한시스템에적용하기힘든한계가

있었다. PANENE알고리즘은이러한긴초기계산시간을획기적으로개선하여

다양한기계학습기법을시각적분석에활용할수있도록한다.특히,유용한비선

형적차원감소기법인 t-분포확률적임베딩(t-Distributed Stochastic Neighbor

Embedding)을 가속하여 수백 개의 차원을 가지는 데이터를 빠른 시간 내에 사

영할 수 있다. 위의 두 시스템과 알고리즘이 데이터의 행 또는 열의 개수로 인한

확장성 문제를 해결하고자 했다면, 세 번째 시스템에서는 점진적 시각적 분석의

신뢰도 문제를 개선하고자 한다. 점진적 시각적 분석에서 사용자에게 주어지는

중간 계산 결과는 최종 결과의 근사치이므로 불확실성이 존재한다. 본 연구에서
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는세이프가드를이용한점진적시각적분석(Progressive Visual Analytics with

Safeguards)이라는새로운개념을제안한다.이개념은사용자가점진적탐색에

서 마주하는 불확실한 중간 지식에 세이프가드를 남길 수 있도록 하여 탐색에서

얻은 지식의 정확도를 추후 검증할 수 있도록 한다. 또한, 이러한 개념을 실제로

구현하여탑재한 ProReveal시스템을소개한다. ProReveal를이용한사용자실

험에서 사용자들은 세이프가드를 성공적으로 만들 수 있었을 뿐만 아니라, 중간

지식의 불확실성을 다루기 위해 세이프가드를 자발적으로 이용한다는 것을 알

수 있었다. 마지막으로, 위 세 가지 연구의 결과를 종합하여 점진적 시각적 분석

시스템을구현할때의디자인적난제와향후연구방향을모색한다.

주요어:정보시각화;인간-컴퓨터상호작용;시각적분석;점진적시각적분석;빅

데이터;대용량데이터;사용자상호작용;차원축소;사용자평가

학번: 2014-21782
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니다.연구실의막내였던것이얼마안된것같은데어느새고참이된부족한저를

잘따라와주는후배들도고맙습니다.이제는어엿한랩장이된복진욱,발표하는

모습이 멋진 남자 김재영, 개발에 대해 남다른 열정을 가진 김준회, 하나의 연구

논문을 석사 과정이라는 짧은 기간동안 완성해낸 김민지, 엉뚱하지만 신선한 자

극을주는최길웅,연구실맨앞자리에서항상열심히공부하는융,묵묵히할일을

수행하는 박관모, 차분하고 의젓한 정석원, 그리고 장래가 촉망되는 두 신입생

고형권과안단태에게고마움을표하고싶습니다.또한,이러한좋은연구실분위

기를만들어물려주시고동참해주신선배님들께도감사를전합니다.

이제는 어엿한 사회인이 되어 각자의 소임을 다하고 있는 친구들에게도 고마

움을표하고싶습니다.박사과정기간동안제가웃음을잃지않게해준유능하고

유머러스한 컴퓨터공학부 09학번 동기들이 있는 것이 고맙고 자랑스럽습니다.

비록 자주 만나지는 못하지만 아직까지 끈끈한 그래서 저에게는 더 각별한 사람

들입니다.

마지막으로,저의든든한후원자인사랑하는가족들에게가장큰감사를올립니

다.엄하지만따뜻하신아버지와지혜로운어머니의한결같은지원과교육덕분에

제가 이 자리까지 올 수 있었습니다. 제가 어떤 결정을 하든 존중해 주신 덕분에

제가 자주적으로 인생을 살아가고 있습니다. 항상 그리고 앞으로도 저보다 어릴

동생이지만누구보다도든든한윤겸에게도고마움을표하고싶습니다.

지면의 한계상 여기서 미처 감사를 표하지 못한 분들께도 앞으로 살아가면서

감사를전할기회가있으리라믿습니다.감사합니다.

2020년 1월

조재민올림
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