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ABSTRACT

We present a data-driven approach to obtain a disentangled and
interpretable representation that can characterize bivariate data dis-
tributions of scatterplots. We first collect tabular datasets from the
Web and build a training corpus consisting of over one million scat-
terplot images. Then, we train a state-of-the-art disentangling model,
β -variational autoencoder, to derive a disentangled representation of
the scatterplot images. The main output of this work is a list of 32
representative features that can capture the underlying structures of
bivariate data distributions. Through latent traversals, we seek for
high-level semantics of the features and compare them to previous
human-derived concepts such as scagnostics measures. Finally, us-
ing the 32 features as an input, we build a simple neural network
to predict the perceptual distances between scatterplots that were
previously scored by human annotators. We found Pearson’s correla-
tion coefficient between the predicted and perceptual distances was
above 0.75, which indicates the effectiveness of our representation
in the quantitative characterization of scatterplots.

Index Terms: Human-centered computing—Visualization—
Visualization theory, concepts and paradigms

1 INTRODUCTION

We aim to identify interpretable latent factors in data distributions
of scatterplot images. Scatterplots are a core visualization technique
in exploratory visual analysis as they give a succinct overview about
the relationship between two quantitative variables. Among various
visual queries one can perform on scatterplots, one of the most
useful low-level tasks is to characterize its data distribution [3, 24].
Such characterization can be done either qualitatively (e.g., “As
one variable increases, the other also increases”) or quantitatively
(e.g., “the Pearson correlation coefficient r is about 0.8”). Once
done, it can be used to facilitate communication between people
or interpretation of others, for example, by providing a caption.
Especially, quantitative characterization enables useful queries to
speed up the visual exploration of scatterplots, such as clustering
similar scatterplots to reduce the number of scatterplots to inspect,
or finding the most similar scatterplot to a target scatterplot.

To enable such characterization, a body of studies have attempted
to devise features that capture interesting structures in the data dis-
tribution of a scatterplot. For example, consisting of nine hand-
engineered measures with each ranging from zero to one, graph-
theoretic scagnostics [28] is designed to capture the presence of spe-
cific structures in a scatterplot, such as Outlying, Skewed, Clumpy,
Convex, Skinny, Striated, Stringy, Straight, and Monotonic. Using
the measures, one can computationally characterize a scatterplot
by describing it as a scagnostics vector of nine dimensions. Such
vectors can be later used to efficiently approximate the similarity
between two scatterplots; for example, ScagExplorer [7] curates
representative scatterplots created by clustering similar scatterplots,
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considering the L2 distance between two scagnostics vectors as the
distance between the corresponding scatterplots.

However, one limitation of scagnostics measures is its coverage;
the nine hand-engineered features may not be enough to faithfully
capture interesting structures in a multitude of scatterplots. More-
over, the measures can be correlated, leaving a potential bias in
similarity measurement. Indeed, in our corpus consisting of more
than one million scatterplots, we could find a strong correlation be-
tween scagnostics measures (e.g., Pearson’s rStriated,Stringy > 0.92),
which implies scagnostics tends to give a high priority to a specific
structure. Consequently, the distance between two scagnostics vec-
tors does not guarantee to reflect the actual distance perceived by
a human, as a follow-up study [21] suggested that the L2 distance
between scagnostics vectors only explains small variance of the
perceived distance (Pearson’s rpredicted,perceived < 0.26).

Acknowledging the limitations of scagnostics, researchers have
attempted to identify the structures that affect similarity judgements
by observing how people actually cluster similar scatterplots. For
example, Pandey et al. [21] asked 18 participants to cluster 247
representative scatterplots and identified six important terms that
people used to describe the clusters: Density, Orientation, Spread,
Regularity, Grouping, and Edges. Nonetheless, these terms are
explanatory but not predictive as they are not sufficient to quantify
the similarity between two unseen scatterplots.

We postulate the following three requirements for an effective
representation of a scatterplot:

1. Predictive: The representation can be used to predict the per-
ceptual similarity between two unseen scatterplots as scagnos-
tics measures do (with a limited accuracy).

2. Interpretable: The representation should remain explainable,
seeking for trustworthiness and reliability.

3. Generalized: The representation should be designed to faith-
fully capture the diverse structures of real data distributions.

To find a generalized and factorized representation, we present
scatterplot images of a variety of real data distributions to a machine
agent. The machine agent learned a disentangled representation of
the data distributions without supervision. As a training dataset,
we collect tabular datasets from the Web and build a large corpus
of normalized scatterplot images which has about 1.1 million scat-
terplots. By traversing the latent space that the agent learned, we
seek the interpretation of each latent factor that could possibly be
overlooked in previous studies. Finally, we present a simple neural
network with one hidden layer that can predict the human-annotated
distances obtained from a previous study [21] with a high correlation
coefficient (Pearson’s rpredicted,perceived > 0.75).

2 RELATED WORK

Our work stands between the visualization and machine learning
fields. On the visualization side, we cover previous work for mod-
eling the perceptual similarity between scatterplots. Then, from a
machine learning perspective, we elaborate on the recent advances
in finding a disentangled representation of images.

2.1 Perceptual Similarity between Scatterplots
Inspired by scagnostics by John and Paul Tukey [26], Wilkinson et
al. [28] realized nine graph-theoretic scagnostics measures that are



computationally efficient enough to be used in practice. Scagnostics
has proven its effectiveness in follow-up studies and extended to
various data types. For example, ScagExplorer [7] facilitated the ex-
ploration of large scatterplot matrices (SPLOM) by clustering similar
scatterplots based on the distance between their scagnostics vectors.
Scagnostics has been extended to three-dimensional spaces [9] and
high-dimensional time series [6]. Researchers also attempted to un-
derstand the characteristics of scagnostics; for example, Wilkinson
et al. [29] demonstrated the distribution of each scagnostics measure
from 1,000 synthetic scatterplots. More recently, Dang et al. [8] pre-
sented a method to revealing hidden structures in data by inspecting
changes in scagnostics measures after scale transformations.

Despite the widespread use of scagnostics, it is also found that the
distance between scagnostics vectors has a weak correlation with the
distance people actually perceive [21]. To understand factors that af-
fect similarity perception, Pandey et al. [21] identified six important
concepts, such as Density and Orientation, which people commonly
used to describe similar scatterplots. Based on human annotators’
perception on similarity, Ma et al. [19] presented a subjective simi-
larity model that can recommend scatterplots perceptually similar
to a target using deep neural networks. Finally, Matute et al. [20]
presented skeleton-based scagnostics consisting of two novel mea-
sures DH and DF , based on the Hausdorff and Fréchet distances
respectively, and showed their measures better predict the perceptual
distance between 29 test scatterplot images.

Nonetheless, we found that studies meeting our three require-
ments in the introduction are rare. For example, scagnostics [28]
is interpretable, but it is unknown to what extent it covers gen-
eral structures of data distributions. The six important concepts
in similarity judgements [21] are interpretable but not predictive
as they cannot quantify the distance between scatterplots. Scatter-
Net [19] is predictive and generalized, but it is still challenging to
explain what structural features were captured, since the features
were not disentangled well. Finally, skeleton-based scagnostics [20]
leaves a question on its generalizability due to the limited number
of scatterplots tested in a user study. Seeking for an interpretable
and generalized representation, we use a β -variational autoencoder
(β -VAE) [10], a deep neural network that demonstrated the state-of-
the-art disentangling performance, on a training corpus consisting
of over one million scatterplot images. We also test the prediction
performance of our model by modeling scatterplot similarities from
a previous study [21].

2.2 Disentangled Representation

From a machine learning perspective, our problem can be seen as
finding independent generative factors of scatterplot images. This
problem is often called disentangling the factors of variation in
observations (in our case, scatterplot images) [4]. Let a vector z
denote a disentangled representation of a scatterplot image x. If z
is a successful disentangled representation, changing the value of
one dimension of z (e.g., the first dimension of z, z1) will result
in changes in x by a single generative factor, keeping other factors
relatively invariant [10]. For example, assume that we have obtained
a disentangled representation of MNIST handwritten digits [18].
Changing one dimension of z (e.g., z1) may generate digits with
different rotations but with a consistent stroke width. Similarly,
changing another dimension (e.g., z2) may only change the stroke
width of digits, keeping the rotations invariant.

A Generative adversarial network (GAN) is a common and useful
method to learning a disentangled representation of images. The
original GAN consists of two deep neural networks, a generator G
and a discriminator D. G learns to map a latent feature vector z
to a realistic input image so as to deceive its adversarial network
D. Many variants of GAN have been suggested to capture more
disentangled and interpretable factors of input images; for example,
InfoGAN [5] modified the original architecture by rewarding the

mutual information between the observations and a subset of latent
factors. Deep convolutional inverse graphics network (DC-IGN) is
another semi-supervised approach to learn a disentangled represen-
tation of data [17]. DC-IGN encourages neurons to learn specific
graphical transformation by presenting mini-batches of data corre-
sponding to changes in only one scene variable (e.g., azimuth of
faces). In this paper, we chose β -VAE for its high disentanglement
score [10] and capability of unsupervised training.

Consisting of an encoder g and a decoder f , autoencoders [11]
are designed to discover an efficient coding z to compress and re-
construct the original input x in an unsupervised way. Instead of
directly encoding x as z, a variational autoencoder (VAE) [16] learns
to compute the mean and variance of z, µ(z) and σ2(z), for a stable
and scalable training process. More recently, β -VAE [10] introduced
a hyperparameter β that controls the trade-off between the capacity
of reconstruction and learning statistically independent latent factors,
showing the state-of-the-art disentangling performance comparable
to other recent models, such as InfoGAN [5] and DC-IGN [17].
With this encouraging result, we chose to use β -VAE to elicit a
disentangled representation from scatterplot images.

To understand the learned representation, it is necessary to inter-
pret the meaning of the latent space found. A variety of quantitative
measures for assessing the quality of disentanglement have been pre-
sented [10]. However, we are more interested in deriving high-level
semantics of each dimension in the latent space as in scagnostics.
One popular method is to inspect latent traversals [14]; we will
visualize a series of scatterplot images reconstructed from a latent
code z by gradually changing its value at only one dimension (e.g.,
z1) while fixing the values at the others (e.g., z[2,dim(z)]). Then, we
inspect the reconstructed scatterplot images (from the manipulated
codes) to see the meaning of the dimension. We believe our se-
mantics garnered by latent traversals is more interpretable than a
previous deep neural network [19], but a more systemic approach to
pinpointing the meaning would be possible in the future.

3 DISENTANGLED REPRESENTATION OF SCATTERPLOTS

We elaborate on the data collection and training process of our work
as well as the rationale behind the choice of a machine agent.

3.1 Data Collection
Scatterplot images on the Web are often noisy due to the use of extra
visual elements, such as annotations, and multiple visual channels
such as colors of points. To control such variation, we chose to
collect raw data from the Web and convert them into “normalized”
scatterplots. We used 2,101,990 datasets from the UCI Machine
Learning repository [2] and a previous study [12] that collected
JSON files from a public visualization gallery, Plotly Feed [1]. To
identify quantitative fields in data to be shown in a scatterplot, we
use the following criteria: a field is considered quantitative if all
values in the field can be converted to floating point numbers with
more than 20 unique values, ensuring not to include a categorical
field with numeric class names. We discarded datasets that did not
have a pair of quantitative fields (about 64% of the datasets) and
had more than 30 quantitative fields (about 1.9%), since they could
be generated by machines and result in a large number of synthetic
scatterplots. After removing datasets that were exact duplicates of
each other, we obtained 477,177 unique datasets.

We combined all possible pairs of the quantitative fields in each
dataset to generate 64×64 single-channel black-and-white scatter-
plot images. For each pair of fields, rows with missing values on
either field were discarded. We computed the minimum and max-
imum values for each of the two fields and used them to compute
the position of a data point in a scatterplot. To avoid distracting the
machine agent by visual embellishments, we plotted each data point
as an 1×1 pixel without axes, legends, etc. A pixel was marked as
white if at least one data point belonged to the pixel. Otherwise, it



Figure 1: Manipulating latent representations of two scatterplot images. Among the 32 latent factors, we selected the top eight most
informative factors with the largest Kullback-Leibler divergence to a unit normal distribution. We visualize the effect of the factors on the output
images as their values vary from −2.5 to 2.5.

remained as black. Note that such a policy may outweigh outlying
points than multiple points mapped to the same pixel, since it does
not consider their density. Through the data collection procedure,
we could obtain a corpus of 1,189,038 unique scatterplot images.

3.2 Model Selection and Implementation
As a machine agent, we used β -VAE [10] for its disentangling
performance and stability in training. We initially tested several
recent models, such as DCGAN [23], InfoGAN [5], and DC-IGN
[17]. However, with our corpus, we found the GAN-based models
suffered from the mode collapse problem [25] where the generator
learns to generate only a few modes of scatterplot images neglecting
many other modes. DC-IGN requires a semi-supervised training
procedure where input images differ in only one generative factor.
However, in our case, we do not know a priori generative factors
underlying scatterplot images, and even if we knew, it would be
infeasible to gather images with only one factor varying due to the
sheer size of our corpus.

β -VAE consists of two deep neural networks, an encoder g and a
decoder f . The encoder transforms a scatterplot image, a 64×64×1
tensor where the last dimension denotes the channel of the image
(i.e., black-and-white, 0.0 for black and 1.0 for white), to a latent
representation z of lower dimensionality by estimating its mean and
variance in each dimension, i.e., µ(z) and σ2(z). The decoder learns
to reconstruct z back to a scatterplot image as similarly as possible
to the original image (i.e., minimizing the difference between x and
f (g(x))). Since β -VAE internally projects input images on a lower-
dimensional space, the latent representation z is expected to capture
important features in characterizing the images.

β -VAE introduces a hyperparameter β that controls the trade-off
between reconstruction capacity and the extent of disentanglement.
Inspired by a previous study [10], we set the value of β to 4 and used
32 latent dimensions, i.e., z ∈R32. We also employed a network
architecture similar to the previous study [10] as shown in Table 1.
We implemented the model on the PyTorch framework [22] and
trained it using an Adam optimizer [15] with a learning rate of 2e-3.
The source codes for this work are available at https://github.
com/jaeminjo/Disentangling-Scatterplots.

4 RESULTS AND DISCUSSION

After the training process, we can use the encoder of β -VAE to
map a scatterplot image to a lower-dimensional latent representation

z of 32 dimensions. The representation can be seen as a feature
vector that describes important characteristics of the original image.
We qualitatively analyze what structures were captured by β -VAE
through latent traversals. We also demonstrate such feature vectors
can be used to predict the perceptual distances between scatterplots.

4.1 Latent Traversals
Fig. 1 shows the results of latent traversals for two scatterplot im-
ages: one has a Gaussian distribution at the center (Fig. 1a) and the
other has a strong linear relationship with several scattered outliers
(Fig. 1b). In each example, the original and reconstructed images
(through β -VAE) are shown on the top. Since the dimensionality
of a latent representation z is much lower than that of the original
image, information loss is inevitable; one can see that the details of
the input image (i.e., scattered points of Fig. 1b) are lost in the re-
constructed one. Among the 32 latent dimensions, we chose the top
eight most informative dimensions with the largest Kullback-Leibler
divergence to a unit normal distribution (labels on the vertical axis
in Fig. 1). We named each dimension by interpreting its effect in
reconstructing images; for a representation, we changed the value at
each of the eight dimensions over [−2.5,2.5], decoded the manipu-
lated representation using the decoder of β -VAE, and compared the
manipulated image with the original reconstruction.

The most informative feature in characterizing scatterplot im-
ages was related to the correlation between the two variables in a
scatterplot. On the first row of Fig. 1, one can see that negative
values on the first dimension, which we named Dcorr, generated scat-
terplots with negative correlation, while positive values produced
images with positive correlation. Note that the effect of Dcorr was
not symmetric; large positive values on Dcorr produced images with
almost perfect positive correlation, but we could not produce images
with perfect negative correlation. This may be due to the charac-

Table 1: Architecture of β -VAE

Input 64×64×1

Encoder
Conv 32×4×4 (stride 2), 32×4×4 (stride 2),
64×4×4 (stride 2), 64×4×4 (stride 2),
FC 256, ReLU activation

Latents 32

Decoder Deconv reverse of encoder, ReLU, Sigmoid
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teristic of datasets on the Web as scatterplots with strong positive
correlation were more frequent. The second most informative dimen-
sion, Ddensity, described the overall density of a scatterplot from the
sparsest image to the densest image (see the second row of Fig. 1).
Note that Ddensity did not affect the correlation of scatterplots; it is
successfully disentangled from Dcorr.

The next dimensions, Dpos u and Dpos v, affected the position
of the “center” of a cluster. Dpos u determined the position on one
diagonal axis u (from top-left to bottom-right) while Dpos v affected
the position on the other v (from top-right to bottom-left). Although
their directions differ from ones people commonly use (i.e., x and
y), β -VAE successfully found two orthogonal axes u and v.

Interestingly, the fifth dimension, Dvariance, encoded the rela-
tive variance between the x and y axes. For example, a positive
value on Dvariance produced horizontally long distributions where
σ2(X) > σ2(Y ), while a negative value generated vertically long
distributions where σ2(Y ) > σ2(X). The next dimension Dscatter
was related to the area on which data points are distributed. For
instance, negative values on Dscatter generated data points scattered
overall especially with two clusters on the top-right and bottom-left
corners, while positive values left the points to gather at the center.
The last two dimensions, Dskew x and Dskew y, generated “tails” on
distributions, which may be related to statistical skewness [13]. For
example, negative values on Dskew y generated images of an inverted
triangle shape whose points are skewed to the bottom. Dskew x also
left data points skewed to the left (when negative) and to the right
(when positive), but the amount of disentanglement was less signif-
icant as its lower KL divergence (KL = 0.49) suggested. See the
supplementary material for latent traversals with more input images.

Compared with previous studies [21, 28], our approach auto-
matically captures important structures in the decreasing order of
importance. We could identify common concepts in ours and previ-
ous ones; for example, Density from Pandey et al. [21] indicates the
concentration of data points in a certain region which is relevant to
Ddensity and Dscatter. Similarly, Orientation refers to the characteri-
zation of trends in scatterplots, which is similar to Dcorr. However,
concepts indicating strong edges in scatterplots (Striated in scagnos-
tics and Edges in Pandey et al. [21]) were missing in our model. The
reason may be that such high-frequency and non-aligned patterns
were averaged when convolutional layers extracted features. In the
next section, we show how our representation can be complemented
by borrowing such missing concepts from scagnostics.

4.2 Perceptual Distance Prediction
As reported in a previous experiment [21], the L2 distance between
two scagnostics vectors does not explain the perceptual distance
between scatterplots well (Pearson’s r < 0.26). To better predict the
distance, we made the following two improvements:

1. β -VAE Representation: Instead of nine scagnostics mea-
sures, we use the encoder of our model to extract 32 latent
features from a scatterplot image.

2. Neural Network-based Approximator: We found the em-
pirical distribution of scagnostics measures is skewed, even
having strong correlation between measures. Instead of giv-
ing equal weights to measures (e.g., L2 distance), we adopt a
simple neural network to better determine the weights.

We conducted an experiment as follows: we first collected 247
scatterplots from a previous study [21] with their perceptual dis-
tances known through a user study in a range between 0 (most
similar) and 1 (most dissimilar). We filtered out the scatterplots
according to our filtering criteria (Sect. 3.1), which resulted in 180
scatterplots and 16,110 pairs of them. We used five-fold cross vali-
dation; we separated the pairs into a training set and a test set. For
a scatterplot pair in the training set, we extracted the code of each
scatterplot. We used three code conditions: 1) scagnostics measures

Table 2: Correlation between Predicted and Perceived Distances

Code Approximator Pearson’s r

Scagnostics L2 Distance < 0.26 [21]

Scagnostics 1-hidden-layer NN 0.637

β -VAE 1-hidden-layer NN 0.706

β -VAE + Scagnostics 1-hidden-layer NN 0.751

(9 dimensions), 2) a representation from the encoder of our model
(32 dimensions), and 3) concatenation of both (9+32 = 41 dimen-
sions). Then, we concatenated the codes of the two scatterplots in
a pair into a pairwise code; the three code conditions generated a
pairwise code of 18, 64, and 82 dimensions, respectively.

We trained a simple neural network (hereafter, Approximator)
so that it predicts the perceived distance of a pair from its pairwise
code. To make Approximator less obscure, we only used one hidden
layer with 32 neurons. Using the test set, we computed the Pearson’s
correlation coefficient between the predicted distances and perceived
distances as in a previous study [21]. The correlation was averaged
over five folds. Approximator had layers of BatchNorm-Linear(32)-
ReLU-Linear(1) and was trained using the MSE loss function and
an Adam optimizer [15] with a learning rate of 5e-3.

Table 2 shows the prediction performance depending on code
conditions in terms of Pearson’s r. Overall, using a neural net-
work instead of L2 distance resulted in a higher correlation coef-
ficient even though the network was simple (i.e., only one hidden
layer). Our code (rβ -VAE = 0.706) outperformed scagnostics mea-
sures (rscagnostics = 0.637). Surprisingly, we could achieve the high-
est correlation coefficient when the two codes were combined and
used together (rβ -VAE+scagnostics = 0.751).

As discussed in Sect. 4.1, the results suggest that the β -VAE and
scagnostics codes can complement each other. It seems that β -VAE
is able to capture the overall structures of scatterplots, although there
also exist generative factors not captured by β -VAE but that play an
important role in human judgement. For instance, it is shown that
people are sensitive to strong edges in scatterplot images when judg-
ing the similarity [21], but such a feature was not present in β -VAE,
while scagnostics has dedicated measures for this such as Skinny
and Striated. Another reason would be the capability of capturing
outliers. We found outliers were often missing after reconstruction,
which may result from the denoising nature of autoencoders [27].
However, such information could be preserved better in scagnostics,
for example, through the Outlying measure. In summary, we found
that our β -VAE model can produce an interpretable representation
that is also effective in predicting the perceived distance between a
pair of scatterplots. We also discovered that the prediction perfor-
mance can be further improved by complementing our representation
by previous scagnostics measures.

5 CONCLUSION AND FUTURE WORK

We present a data-driven approach to identify latent factors that
can describe the characteristics of empirical data distributions in
scatterplot images. Our representation is derived using β -variational
autoencoder on a training corpus consisting of 1M+ scatterplot
images. Our representation is interpretable and predictive; we could
not only interpret its most informative features, but also predict
the perceptual distance between scatterplots with high correlation
(r > 0.75) complemented by scagnostics measures.

For robustness in training, we simplified scatterplot images to be
binary and use only positional channels (i.e., x and y). It would be
interesting to identify generative factors of scatterplot images with
multiple visual channels, such as opacity and size, used simultane-
ously. We are also excited to compare our model to another deep
learning-based model such as ScatterNet [19].
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