Autotator: Semi-Automatic Approach for Accelerating the Chart Image Annotation Process

Junhoe Kim
Seoul National University
Gwanak-gu, Seoul, Republic of Korea
jhkim@hcil.snu.ac.kr

Jinwook Seo
Seoul National University
Gwanak-gu, Seoul, Republic of Korea
jseo@snu.ac.kr

Jaemin Jo
Seoul National University
Gwanak-gu, Seoul, Republic of Korea
jmjo@hcil.snu.ac.kr

Abstract
Annotating chart images for training machine learning models is tedious and repetitive especially in that chart images often have a large number of visual elements to annotate. We present Autotator, a semi-automatic chart annotation system that automatically provides suggestions for three annotation tasks such as labeling a chart type, annotating bounding boxes, and associating a quantity. We also present a web-based interface that allows users to interact with the suggestions provided by the system. Finally, we demonstrate a use case of our system where an annotator builds a training corpus of bar charts.

Author Keywords
Chart annotation; Data collection; Information extraction; Deep learning; Mixed-initiative interaction.

ACM Classification Keywords
H.5.2 [Information interfaces and presentation (e.g., HCI)]: User Interfaces

Introduction
Computer vision technologies opened up a new research area in information visualization. Various CNN-based systems have been proposed to extract metadata (e.g., a chart type) [1, 3, 6, 10, 11, 12] or underlying data (e.g., x and y coordinates of data points) [1, 3, 13] from chart images.
Furthermore, recent advances in computer vision have enabled a new set of interactions between people and visualizations, such as recoloring visualizations or adding interactivity to them. [3, 11]. One of the prerequisites for those intelligent applications is a large annotated dataset for training neural network models, but building a quality dataset requires much human resources. In particular, creating annotations is often more difficult for chart images than natural images, because the chart images have more visual elements to annotate (e.g., axes, labels, and marks) that can even appear repeatedly. As a result, previous studies have used relatively small (~10K) or synthetic datasets [7].

We present Autotator, a semi-automatic chart annotation system that provides suggestions tailored to annotation tasks. We surveyed nine InfoVis papers that used computer vision techniques on chart images and elicited three common tasks. Autotator supports the following three annotation tasks:

T1. **Labelling a chart type** is a task of determining a type of a chart (e.g., simple, stacked, or grouped for a bar chart and pie or donut for a pie chart) [1, 3, 6, 10, 11, 12, 13].

T2. **Annotating bounding boxes** is a task of drawing a box that includes a specific visual element (e.g., an axis or a bar), if needed, with its label (e.g., X or Y) [1, 2, 10, 11, 12, 13].

T3. **Associating a quantity** is a task of associating a quantity to a chart image (e.g., the number of colors used for bars) [4].

We develop CNN-based predictors for the tasks and train the predictors each time a specific amount (e.g., 100) of new annotated images are collected. As more annotated images are provided by human annotators, the predictors are improved to give more accurate suggestions, which may in turn accelerate the annotation process by the human annotators.

Use Case

We present a use case to demonstrate our system, where we assume an annotator, Sara, is annotating a bar chart (see Figure 1). Her first task is to choose the type of the chart among possible choices (simple, grouped, or stacked). Autotator suggests grouped, which is correct. She moves on to the next task, just accepting the suggestion. Next, she needs to annotate the X and Y axes of the chart. Autotator gives suggestions for the axes (Figure 2a), but she notices that the bounding box for the Y-axis does not include the bottommost tick label, “0”. She vertically stretches the box by dragging the corner so that the box covers all the tick labels. For the third task, she wants to annotate all bars in the chart. She finds that the predictor correctly detects most of the bars except for a few ones (Figure 2b). To fix the misaligned boxes, she can either 1) redraw a box by selecting its the top-left and bottom-right corners or 2) right-click on a
pixel in a bar to automatically select a rectangular region of adjacent pixels with similar colors. Then, she confirms that two quantities, the number of colors used for color-encoding and the number of bar groups, are correctly predicted. Finally, she submits the current annotation and moves on to the next chart. Figure 3 demonstrates a similar use case for a pie chart.

Suggesting Annotations
For T1 and T3, we employed existing ResNet-18 pre-trained on ImageNet [5]. For training, we used the softmax cross-entropy loss and the MSE loss for T1 and T3, respectively, using Adam [8] with a learning rate of 1e-3. For T2, we employed Faster-RCNN with feature pyramid network [9] pre-trained on COCO train 2017 and tuned the anchor box generator of the network, so that it assigns positive labels to anchors with a more extreme aspect ratio, such as bars in a bar chart. For training, we used the same loss function as the original article using Adam with a learning rate of 1e-4. Each time a specific amount of annotated images are collected, we trained new models in background and switched them with the old ones on the fly.

Conclusion and Future Work
We present Autotator, a semi-automatic chart image annotation system with suggestions provided by CNN-based predictors. Currently, Autotator supports pie and bar charts but can be extended to other charts such as scatterplots. We are also excited to automate the annotation of text labels, for example, through optical character recognition, to broaden the coverage of our system.

REFERENCES

