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ABSTRACT 
For interactive exploration of large-scale data, a preprocessing 
scheme (e.g., data cubes) has often been used to summarize the data 
and provide low-latency responses. However, such a scheme 
suffers from a prohibitively large amount of memory footprint as 
more dimensions are involved in querying, and a strong 
prerequisite that specific data structures have to be built from the 
data before querying. In this paper, we present SwiftTuna, a holistic 
system that streamlines the visual information seeking process on 
large-scale multidimensional data. SwiftTuna exploits an in-
memory computing engine, Apache Spark, to achieve both 
scalability and performance without building precomputed data 
structures. We also present a novel interactive visualization 

technique, tailed charts, to facilitate large-scale multidimensional 
data exploration. To support responsive querying on large-scale 
data, SwiftTuna leverages an incremental processing approach, 
providing immediate low-fidelity responses (i.e., prompt responses) 
as well as delayed high-fidelity responses (i.e., incremental 
responses). Our performance evaluation demonstrates that 
SwiftTuna allows data exploration of a real-world dataset with four 
billion records while preserving the latency between incremental 
responses within a few seconds. 

Keywords: Information visualization, exploratory analysis, large-
scale data exploration, scalability, incremental visualization. 

Index Terms: H.5.2 [Information Interfaces and Presentation (e.g., 
HCI)]: User Interfaces—Graphical user interfaces (GUI) 

1 INTRODUCTION 
Although there have been great advances in visualization and 
database technologies, visual analysis of large-scale 
multidimensional data is still challenging. The foremost issue is the 
long latency of queries, which resulted from the sheer magnitude 
of the data. To tackle this issue, researchers in the InfoVis and 
database community have attempted to enable low-latency visual 
exploration of large-scale data. Through a survey of relevant 
studies and visualization systems, we could identify the following 

 
Figure 1: Interface of SwiftTuna. An analyst is exploring a multidimensional dataset with 100 million entities. Visualization cards (two expanded 
cards and six thumbnail cards) on the right side provide a univariate summary on a single dimension or visualize the relationship between two 
dimensions. The analyst expanded two visualization cards to further interact with them. The card list panel on the left side shows the list of all 
visualization cards as well as the progress of each card. 
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four requirements for interactive visual analytics systems for large-
scale multidimensional data and define a design space for such 
systems (Figure 2).  

R1. Large-scale Data Processing The system should be able to 
process large-scale data in a scalable manner. It is hard to define 
what large-scale or big data means in a concrete number [18]. In 
addition, even if there is a concrete definition, it may vary across 
domains or have to change as technology advances. However, to 
make the contribution of our work clear, we consider one billion 
entities as the minimum size of large-scale data. That number is the 
largest number of entries that have been used to evaluate interactive 
systems for large-scale data analytics in information visualization 
[21][23]. 

R2. Responsive Interaction It is known that a shorter interaction 
latency could promote insight generation [22]. However, querying 
on large-scale data often takes a few minutes or even a few hours, 
which is too long to keep users’ attention [25]. To support fluent 
data exploration without losing users’ attention on ongoing tasks, 
the system should respond to queries in less than 10 seconds.  

R3. Interactive Multidimensional Exploration Multi-
dimensionality is another important aspect of large-scale data 
exploration because most real-world large-scale datasets have two 
or more attributes. The system should be able to illuminate various 
aspects of such datasets, enabling users to explore relationships 
among multiple dimensions through visualization. By allowing 
users to generate perceptually effective 1D or 2D projections of the 
multidimensional data, users would be able to gain meaningful 
insights covering multiple dimensions of the data [29]. This 
requirement also includes interaction on multiple dimensions; for 
example, users should be able to delve into a small set of interesting 
data by applying filters. 

R4. Scalable Visualization Not all traditional visualization 
techniques are applicable to large-scale data analysis. Most 
traditional visualizations could suffer from severe overplotting or 
cluttering problems when applied to large-scale data. Therefore, 
visualization designers have to consider the scalability of their 
visualizations more seriously to enable users to perceive and 
understand the visualizations of large-scale data. 

In Figure 2, we classified previous approaches that aimed at 
addressing a subset of the four requirements, according to their 
computation schemes (i.e., preprocessing or incremental), their 
system types (i.e., single machine or distributed), and the maximum 
data size tested for evaluation (i.e., the number of rows).  

Preprocessing schemes that preprocess raw data and build a 
specific data structure (e.g., data cubes) for rapid querying have 
been a major approach for realizing large-scale data exploration 
(the left column in Figure 2). For example, imMens [23] 
precomputed multivariate data tiles for responsive brushing and 
linking in visualizations. However, as criticized in previous studies 
[12][19], the limitations of the preprocessing scheme are that 1) 
preprocessing must take place before analytics 2) building 
precomputed data structures with all dimensions in 
multidimensional data is often infeasible due to the prohibitive 
memory footprint, and 3) thus only a certain set of queries on a 
certain set of dimensions can be answered.  

In contrast, the incremental processing scheme can serve as a 
viable solution to surmount those shortcomings. In this scheme, 
queries are processed online in a distributed and incremental 
manner without using prebuilt data structures. In our survey, we 
found a few studies (i.e., the top right cell in Figure 2) employed 
the incremental processing scheme for visual exploration of large-
scale data. For example, VisReduce [19] presented a modified 
MapReduce-style algorithm on a compressed columnar data store 
to support incremental visualizations. 

However, regardless of the computation scheme, we found that a 
holistic approach that satisfies all four requirements is rare. For 

example, imMens [23] supports real-time visual querying (R2) and 
scalable visualizations and interaction (R4) but lacks the scalability 
in data processing (R1) since it stores its data structure in the main 
memory on a single machine. Also, imMens only allows filtering 
on two dimensions (e.g., brushing on 2D binned plots) at once, 
which does not satisfy R3. VisReduce [19], which may be the most 
relevant to ours, focuses on fast and responsive information 
visualization (R2), but it is not validated in terms of our scalability 
requirement (R1). Also, it does not support interactive 
visualizations for multidimensional data exploration (R3). 

In this paper, we present SwiftTuna, a holistic approach to enable 
fluent visual exploration of large-scale multidimensional data. We 
explore the opportunity of incremental data processing for 
information visualization with a real-world scale in mind (R1). 
SwiftTuna does not resort to a prebuilt data structure (e.g., data 
cubes) but incrementally processes the raw data in a distributed 
manner, enabling users to instantly initiate visual analytics with 
their data and request queries that cover multiple dimensions (R3). 
Our work is neither limited to processing large-scale data 
efficiently for visualization nor to designing visualizations and 
interaction for scalability. Rather, our work puts emphasis on 
designing and developing a holistic visual analytics system that 
streamlines the whole process of visual information seeking for 
large-scale multidimensional data.  

SwiftTuna consists of three layers: the data processing layer, 
visualization layer, and querying layer. In the data processing layer 
on the server side, SwiftTuna leverages an in-memory cluster 
computing engine, Apache Spark [34], to achieve both high 
scalability and extendibility. For the visualization layer on the 
client side, we carefully design a user interface and visualizations 
that summarizes multiple dimensions of the data in a scalable 
manner. The querying layer bridges the client and the server. To 
support responsive querying such as filtering on the data, 
SwiftTuna leverages an incremental processing approach [12] that 
enables users to grasp immediate but low-fidelity responses (i.e., 
prompt responses) as well as delayed but high-fidelity responses 
from incremental processing (i.e., incremental responses).  

In the following section, we cover previous work related to 
scalable visual analytics. Then, we present the design of SwiftTuna 
in Section 3 and elaborate on responsive querying on SwiftTuna in 
Section 4. In Section 5, we evaluate our system with a real-world 
dataset that contains about four billion rows, and report the result. 
For continued research, we describe the implementation of 
SwiftTuna in Section 6 and present possible directions for future 
work in Section 7. 

 
Figure 2: Classification of SwiftTuna and relevant previous work 
according to their computation schemes, the maximum data size 
tested for evaluation, and system types. SwiftTuna does not prebuild 
a specific data structure but incrementally processes data online. 
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2 RELATED WORK 
Our work lies in large-scale visualization systems and incremental 
querying. In this section, we review previous studies in each field. 

2.1 Large-scale Visualization Systems 
Godfrey et al. [15] categorized large-scale data processing for 
interactive visualization into two paradigms: the preprocessing 
paradigm and the non-preprocessing paradigm. 

The preprocessing paradigm includes systems that preprocess 
data to build a certain data structure in advance and uses this result 
for future queries. OLAP cubes have been often used to summarize 
large data [7]. Several studies [21][23][26][33] presented data 
structures optimized for information visualization. For example, 
imMens [23] converted data cubes to multivariate data tiles to 
support interactive linking between visualizations. Another 
example is Nanocubes [21], which significantly reduced the 
memory consumption of data cubes by sharing duplicate keys. 
Because the data are summarized in advance, those systems can 
rapidly respond to aggregation and group-by queries.  

On the other hand, non-preprocessing approaches do not resort 
to preprocessing but process raw data in a parallel and scalable 
manner upon a query. One of the most successful approaches to 
handle large-scale data is Apache Hadoop [2], a general framework 
for distributed computing. Apache Hadoop includes a distributed 
file system, Hadoop Distributed File System (HDFS), and a parallel 
processing component, MapReduce [10]. Although Apache 
Hadoop achieves scalability in processing large data, MapReduce 
itself is not appropriate for low-latency querying, since it writes 
intermediate results on disks during calculation. 

In-memory computing technology significantly sped up the 
performance of MapReduce while still keeping the flexibility of the 
non-preprocessing paradigm. We leverage an in-memory general 
processing engine, Apache Spark [34]. Apache Spark keeps data 
and intermediate results in main memory, not writing them on disks, 
to minimize disk I/O and boost performance. Since main memory 
is cheaper nowadays, Apache Spark gains its popularity for in-
memory processing of large-scale data. Built upon Apache Spark, 
Shark [11] allows querying large-scale data with SQL. Shark has 
been integrated into Apache Spark as SparkSQL [4]. Using 
SparkSQL, several web applications such as Databricks, Hue, and 
Apache Zeppelin integrated interactive data analytics with cluster 
computing. However, those applications only provide a limited 
number of mostly static visualization presets without supporting 
important interactions such as brushing and filtering. In this work, 
SwiftTuna incrementally processes data on a computing cluster, 
and visualizes results with scalable visualizations and interactions 
that are designed to support large-scale data exploration. 

2.2 Handling Incremental and Approximate Queries 
Shneiderman suggested the notion of dynamic querying to facilitate 
a visual information seeking process on databases [30]. He 
considered an interval of 100 milliseconds as a temporal limit for 
rapid feedback. However, because of the sheer size of large-scale 
data, it is not always possible to compute and visualize results for 
large-scale data within the limit. In this work, we consider 10 
seconds as a practical limit [25], and SwiftTuna gives incremental 
feedback about every two seconds.  

Proposed by Hellerstein et al., online aggregation is a viable 
approach that realizes dynamic querying on large-scale data [17]. 
Online aggregation visualizes the estimates of an aggregate query 
with confidence intervals. The intervals converge as more data 
points are sampled incrementally, allowing users to observe and 
control the results on the fly. In the Control project [16], Hellerstein 
et al. presented a simple interface that visualizes the running results 
with error bars. BlinkDB [1] generated multidimensional stratified 

samples to allow users to tradeoff query accuracy for response time. 
Going one step further, G-OLA [35] generalized the concept of 
online aggregation to support not only monotonic aggregate queries 
but also more diverse types of queries. In this paper, leveraging the 
concept of online aggregation, we allow users to interact with 
running results in real time and pause or cancel queries after 
inspecting the partial results. 

In the InfoVis community, Stolper et al. [31] suggested 
progressive visual analytics that allows analysts to examine and 
interact with partial results of a running algorithm. Schulz et al.  [27] 
proposed a model for describing incremental visualization process 
in a higher level. Im et al. [19] presented a modified MapReduce-
style algorithm in their VisReduce system for fast incremental data 
processing for visualization, arguing against the preprocessing 
scheme. Turkay et al. [32] presented DimXplorer that could 
perform clustering and principal component analysis (PCA) 
progressively. In this study, we implement the incremental 
calculation of data on a distributed computing engine, Apache 
Spark, and evaluate our system using a much bigger real-world 
dataset than the ones used to test VisReduce and DimXplorer.  

InfoVis researchers have also sought to visualize the uncertainty 
of incremental process. Fisher et al. [14] implemented a prototype 
interface, sampleAction, to observe how analysts interact with 
incremental visualizations. They found that encoding confidence 
intervals with traditional error bars was not easily comprehensible, 
demanding new ways to represent them for incremental 
visualizations. Based on the lesson learned from the sampleAction 
project, Fisher et al. [13] designed alternative visualizations for 
error bars, i.e., density strips and modified box-percentile plots. 
Along similar lines to Fisher et al., Correll et al. [8] presented 
gradient plots and violin plots that outperformed error bars for 
inferential tasks. Inspired by gradient plots, we use gradients as a 
primary visual representation for confidence intervals. 

3 THE SWIFTTUNA DESIGN 
In this section, we describe the design considerations behind 
SwiftTuna and explain the design of our system. 

3.1 Design Considerations 
While addressing the four requirements in our design of SwiftTuna, 
we put emphasis on two specific goals: scalability and 
responsiveness. Scalability is not limited to a server-side 
architecture for large-scale data processing (R1), but encompasses 
multiple scalable visualizations and interactions (R3 and R4). We 
also strive to facilitate fluent data exploration by providing 
responsive feedback (R2). We have iteratively refined our system 
while performing design studies on real-world problems with large-
scale data in manufacturing and online games following the nine-
stage design study methodology framework [28]. As a result, we 
present the design considerations as follows: 

DC1. Provide low-fidelity feedback promptly. A delayed 
response hinders users from observing the data and generalizing 
their findings [22] and causes them to lose their attention [25]. To 
enable fluid data exploration, we provide low-fidelity feedback 
promptly (i.e., prompt responses) based on a small sample from the 
data. The main purpose of prompt low-fidelity feedback is to allow 
users to visually confirm their queries early without looking at an 
empty screen waiting for a late final response. 

DC2. Process results incrementally while estimating the final 
results. Inspired by progressive visual analytics [31], we visualize 
partial results of analytics and estimate the final results before a 
query is fully completed. This enables users to confirm or reject 
their hypotheses as early as possible during exploratory analysis 
and thus test more hypotheses with limited time and resources.  

DC3. Enable flexible scheduling. To amplify the use of partial 
results, SwiftTuna provides flexible management of computing 
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resources. For example, users can pause or stop queries in real time 
if they think partial results are enough for decision-making. This 
makes more resources on the server available for processing other 
queries. Also, users can prioritize a query of interest and examine 
the result on that query first.  

DC4. Support multidimensional data exploration. Multi-
dimensional exploration can lead users to find new insights across 
multiple attributes of the data. SwiftTuna organizes a small 
multiple in a single view that show various aspects of data in a 
series of 1D or 2D projections. Also, it supports essential 
interactions such as brushing, filtering, and details on demand that 
are known to be key tools for the information seeking process.  

3.2 System Overview 
SwiftTuna employs a client-server architecture. The client is a 
single-page web application where users can create queries, 
monitor the progress of the queries in real time, and interact with 
results to explore data (Figure 1). We will elaborate more on the 
interface and interaction of the client in the next section. 

To support responsive feedback with large-scale data, the server 
provides a prompt response (DC1) and processes queries 
incrementally (DC2). When a query from the client arrives, the 
server first returns a prompt response that contains a low-fidelity 
result of the query, which is built from a small sample of the data 
(DC1). To incrementally process the data, the server separates the 
whole data into n blocks, B0 to Bn-1. In turn, the server splits the 
incoming query into n jobs, with each job corresponding to each 
data block. These jobs are inserted into a job queue. The server 
takes the first job, which covers B0, from the queue and runs the job 
on backend workers. Thereafter, the server polls the workers every 
200ms to check whether the job is done. Once completed, the server 
gathers the result from the workers and sends it back to the client. 
The remaining jobs in the queue (i.e., n-1 jobs that cover B1 to Bn-

1) are processed one by one in the same way. 

From the client’s point of view, a series of staggered responses 
arrives for a single query. The client accumulates and combines 
partial results. For example, suppose there is a query that calculates 
a frequency histogram of a categorical dimension, nat_cd, which 
represents the names of countries. The first partial response only 
contains the frequency of countries in B0. When the second result 
arrives, which covers B1, the client accumulates the frequency by 
comparing country names. Then, the client updates progress bars 
and the corresponding visualization. 

SwiftTuna currently supports four visualization-related queries, 
Frequency Histogram, Binned Histogram, Pivot Dot Plot, and 
Density Plot, as well as two data-related queries, Count and Load 
Raw Data. We chose the four visualizations following the concept 
of binned plots [23], which are known to convey global patterns 
and outliers well despite the size of the data. A visualization is 
shown in a visualization card (Figure 3) that serves as a basic unit 
of analysis. Frequency histograms (Figure 4a) and binned 
histograms (Figure 4c) provide a univariate summary on a 
categorical or numerical dimension, respectively. On the other hand, 
pivot dot plots (Figure 5b) and density plots (Figure 5c) are 
appropriate for visualizing a relationship between two dimensions. 
Pivot dot plots aggregate a numerical dimension with designated 
aggregation function (MIN, MEAN, MAX, or SUM), grouping 
rows by a categorical dimension. Density plots visualize the 
relationship of two numerical dimensions. 

Since SwiftTuna separates the data into blocks and processes 
each block one by one, only partial results are available in the 
middle of the process. To allow users to quickly access the results, 
we estimate the final results from the partial results based on known 
statistical procedures (DC2). For example, since the partial results 
are from a sample of the population, we estimate population 
statistics using sample statistics (e.g., using the sample mean and 
the sample standard deviation to estimate the population mean). 
Exceptionally, we decided not to estimate the final results of pivot 
dot plots that use MIN or MAX aggregation because those statistics 
are quite sensitive to outliers and thus cannot be estimated robustly.  

3.3 Scalable Visualization Components 
To enable interactive visual analytics on large-scale data, it is 
necessary to visualize results in a scalable way (R4). We present a 
novel visualization, tailed charts (Figure 4a, 4b), as well as 
improving previous visualization methods [23] with effective 
interaction techniques such as Focus+Context [6]. In this section, 
we describe scalable visualization components of SwiftTuna in 
detail for each query type (Table 1).  

Binned Histograms A binned histogram shows a univariate 
summary of a numerical dimension (Figure 4c and 4d). SwiftTuna 
creates 40 bins by default, and calculates the number of rows that 
fall into each bin. We heuristically chose to use 40 bins, striking a 
balance between performance and the flexibility in resizing bins 
without querying the server. The 40 bins are aggregated into eight 
bins and visualized through a dot plot (Figure 4d).  

Frequency Histograms and Pivot Dot Plots A frequency 
histogram shows the distribution of categories in a categorical 
dimension, while a pivot dot plot visualizes aggregate values of a 
numerical dimension (e.g., mean) over a categorical dimension. 
Both visualizations are different from binned histograms in that the 

Table 1: Visualization Methods According to Query Types 

Query Type Dimension Partial Results Complete Results (Thumbnail) Complete Results (Expanded) 
Frequency Histogram 1 categorical 

Tailed Gradient Plots 
(Figure 4a) 

Tailed Dot Plots 
(Figure 4b) 

Dot Plots 
(Figure 4d) Pivot Dot Plot 1 numerical + 1 categorical 

Aggregation function 
Binned Histogram 1 numerical Gradient Plots (Figure 4c) Dot Plots (Figure 4d) 

Density Plot 2 numerical Density Plots (Figure 5c) 

 

 
Figure 3: A visualization card showing the sum of a numerical 
dimension (age) over a categorical dimension (nat_cd). The 
progress bar on the top edge of the card indicates the number of 
rows that have been processed (a teal bar), are being processed (a 
striped bar), and will be processed (a light-teal bar). Since the results 
are incomplete (only half of rows have been processed), a tailed 
gradient plot is used to visualize the confidence intervals of 
estimated values. 
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values on the x-axis are categorical and thus cannot be aggregated. 
Therefore, the x-axis often becomes crowded as the number of 
categories increases, which is a frequent situation in large-scale 
data analysis. As a remedy, we design a novel visualization, tailed 
charts (Figure 4a, 4b). Tailed charts prioritize prominent categories 
(e.g., the most frequent five categories) by visualizing them with 
salient visual elements in half of visual space, while the rest of the 
categories are outlined in another half of the space with a line (i.e., 
a tail). We designed two variants of tailed charts: tailed gradient 
plots (Figure 4a) and tailed dot plots (Figure 4b), to summarize a 
large number of categories on the x-axis. We believe tailed charts 
allow users to identify the most prominent values effectively as 
well as understand the overall distribution of all data. 

Density Plots A density plot shows the relationship between two 
numerical dimensions (Figure 5c). We create 1,600 bins (40 bins 
for each axis) and count the number of rows for each bin. We ensure 
the minimum opacity of a bin to 0.5 if the bin has at least one row, 
as in a previous work [20]. The center points of bins are color-coded 
by a univariate or bivariate color scheme. Bilinear interpolation is 
used to color-code pixels between the center points. 

Visualizing Uncertainty Since SwiftTuna processes queries 
incrementally and estimates the final results through statistical 
procedures, it is essential to maintain graphical integrity by 
revealing the errors of estimated values. One possible approach is 
to overlay traditional whisker-based error bars on visualizations. 

However, recent studies revealed that the traditional error bars 
suffer from perceptual issues [8][14]. Thus, we adopt an alternative, 
the gradient plots [8], as a primary visual component for encoding 
errors, which are proven to be perceptually more robust. 

When queries are initially issued, gradient plots (Figure 4c) and 
tailed gradient plots (Figure 4a) visualize low-fidelity results, 
showing 95% confidence intervals. As in a previous work [8], a 95% 
confidence interval is filled fully opaquely, and the opacity 
decreases following the inverse cumulative probability function. As 
more blocks are processed and the amount of error decreases, the 
gradients shrink vertically. When all data are processed, the 
gradients eventually converge to look like thin horizontal bars. 
Finally, they disappear, and the gradient plot is replaced with a dot 
plot (Figure 4d) or a tailed dot plot (Figure 4b) according to the 
number of values on the x-axis. We choose to use dots instead of 
bars because they are as effective as bars and more consistent with 
gradient plots in that both dot plots and gradient plots use position 
encoding. Although we do not estimate the results for MIN and 
MAX aggregation, we opt to show a one-sided gradient with a fixed 
height, indicating the results are incomplete.  

To visualize errors of tails in the tailed charts, we opt to connect 
and fill 95% confidence intervals of categories without using 
gradients. Since the width of each gradient often becomes less than 
one pixel, the filled area is clearer to read than gradients. 

 
Figure 4: Tailed charts and dot plots. Inspired by gradient plots [8], we adopt gradients to visualize confidence intervals. (a) Tailed gradient plots 
prioritize prominent categories (e.g., the most frequent five categories) by visualizing them in half of the visual space, while the rest of the 
categories are outlined in another half of the space with a line (i.e., a tail). Gradients show the 95% confidence intervals of estimated values. (b) 
When all data are processed, the gradients eventually converge, and tailed dot plots replace tailed gradient plots. (c) Gradient plots. (d) Dot 
plots. When the number of categories on the x-axis is small (i.e., equal to or fewer than eight), we use previous gradient plots and dot plots 
instead of tailed versions of them. 

 
Figure 5: Expanded visualization cards. Users can switch a visualization card from a thumbnail mode to an expanded mode by clicking on the 
checkbox on the top right corner. Expanded visualization cards provide two coordinated views, a focus view and a context view, as well as 
visualization-specific features such as using a log scale instead of a linear one or using a bivariate color scheme. (a) An expanded gradient plot 
(expanded from Figure 4c). (b) An expanded tailed gradient plot. (c) An expanded density plot. Density plots do not provide the context view for 
brushing, but users can directly brush on the focus view. 
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3.4 Visualization Cards 
A visualization card is a small zoomable widget that serves as a 
basic unit of analysis (Figure 3). The main purpose of the 
visualization card is to help users manage queries in a visual form 
and explore results interactively (DC4). A visualization card 
corresponds to one query. The title of a card describes its query in 
a short string format. Below the title, the result of the query is 
visualized. On the top edge of the card, a progress bar shows the 
current progress of the query. Users can hover the mouse cursor 
over the progress bar to check the number of rows that have already 
been processed, are being processed, and will be processed.  

As shown in Figure 3 and Figure 4, a visualization card is initially 
in a thumbnail mode, showing the result and progress of its query 
in a compact view. Users can expand a card to see details and 
interact with it in a larger view by clicking on the checkbox on the 
top-right corner (Figure 5a). When a card is expanded (i.e., an 
expanded mode), the visualization is split into two sub views, a 
focus view and a context view, and a control panel appears below 
the context view.  

All bins (for binned histograms) or categories (for frequency 
histograms or pivot dot plots) are shown in the context view. Users 
can brush on the context view to examine the details of the brushed 
area in the focus view. If at least 20 pixels in width cannot be 
allocated to each category because of the large number of 
categories or a short screen width, we use a line and connect the 
confidence intervals over categories instead of dots and gradients, 
as in tails of tailed charts (Figure 5b). For the density plots, we do 
not provide the context view because it is certain that the number 
of bins on the x-axis is not too many (i.e., 40 bins for each axis). 
Instead, users can create a 2D brush directly on the focus view.  

Users can also fine-tune the visualization of a card in the control 
panel. The possible options vary depending on query types such as 
options to switch between a linear scale and a log scale on the y-
axis or a color scheme (for all cards), change the number of bins 
(up to 40, for binned histograms), sort the x-axis alphabetically or 
by value (for frequency histograms and pivot dot plots), and clear 
a brush (for all cards). Users can regard a numerical but discrete 
dimension as either categorical or numerical dimension. For 
example, suppose there is a numerical dimension, age, given in 
integer. If age remains numerical, a binned histogram visualizes the 
distribution of age. Otherwise, if age is considered as a categorical 
dimension, a frequency histogram shows the occurrence of an 
individual age value. For density plots, users can switch a color-
coding scheme from a univariate one to a bivariate one to spot low-
density regions in a salient color that can be a clue to outliers. Note 
that all interactions in a control panel are handled by the client 
without querying the server, preventing users from waiting longer. 

3.5 User Interface and Interaction 
As shown in Figure 1, SwiftTuna’s interface mainly consists of two 
components, the card list panel on the left side, and the main 
workspace on the right side. We decided to create initial 
visualization cards (a visualization card corresponds to a single 
query) for every dimension in data as a starting point for users’ 
exploratory analysis. Users can create, remove, or prioritize the 
visualization cards in the card list panel while they can interact 
further with them in the main workspace. 

3.5.1 Card List Panel 
The card list panel serves as a driving wheel for multidimensional 
data exploration (DC4). Users can manage visualization cards in a 
list form, schedule queries, and apply filters. 

Card list At the top of the card list panel, all visualization cards 
are listed with icons that abstract queries (Figure 6a). Users can 
hide a visualization card that is out of interest by toggling an eye 
icon next to its name. Hidden cards are excluded from querying, 

reducing the workload of the server. To create cards for conjunctive 
visualizations such as pivot dot plots and density plots, users can 
click on a plus icon at the bottom of the card list and specify two 
dimensions in an appeared widget (Figure 6e). 

Progress list Users can interactively manage the processing 
order of visualization cards in the progress list (DC3, Figure 6b). 
The progress list shows a priority list of cards and users can reorder 
it through drag-and-drop interaction. When they decide that the 
query of a visualization card is processed enough (e.g., if the 
confidence intervals are narrow enough), they can stop processing 
the query by clicking on a pause icon. These features allow users to 
flexibly schedule the job queue of the server.  

Filter list Users can explore a subset of data by applying filters. 
A filter has a condition defined by either a range (e.g., [20, 30] for 
a numerical dimension age) or a list of categories (e.g., {KR, JP} 
for a categorical dimension nat_cd). They can create a filter by 
brushing on a visualization card. Then, the filter is added to the 
filter list, displaying its condition (Figure 6d). When users activate 
a filter by clicking on the funnel icon next to its condition, all cards 
visualize only rows that satisfy the condition of the filter. 
SwiftTuna supports conjunctive filtering (i.e., combination of 
multiple filters). Since SwiftTuna does not build precomputed data 
structures for a determined set of dimensions as in data cubes, users 
can apply multiple filters on every dimension in data 
simultaneously. For more detailed analysis, users can inspect the 
filtered raw data in a paged list by opening a data viewer (the 
bottommost button in Figure 6d). 

3.5.2 Main Workspace 
The main workspace allows users to examine expanded 
visualization cards in detail while keeping other cards accessible 
through horizontal scrolling (DC4, Figure 1). The main workspace 

 
Figure 6: Card list panel. (a) The card list shows the list of 
visualization cards. Initially, cards for every single dimension are 
provided. (b) The progress list illustrates the progress of each card 
with a progress bar. Users can stop or resume processing the query 
of a card by clicking on stop and play icons, respectively. (c) Users 
can prioritize queries with two options: block order and list order. We 
elaborate on scheduling in Section 4.1. (d) Each time users brush on 
a visualization, a filter that represents the brushed area is added to 
the filter list. Users can click on a funnel icon to activate the filter. (e) 
Users can create a new card for two dimensions (e.g., for a density 
plots between two numerical dimensions) by clicking on a plus icon 
at the bottom of the card list. 
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presents visualization cards that are not hidden in the card list panel 
(Figure 6a). Initially, all cards are in a thumbnail mode, positioned 
in a grid-like view with four cards in a row. When users expand 
some of cards, the expanded cards are horizontally arranged in the 
upper part of the main workspace, and remaining cards shrink and 
move to the bottom part of the workspace.  

4 RESPONSIVE QUERYING 
Inspired by Fisher's workflow for incremental visualization system 
[12], we adopt the incremental querying approach to achieve 
responsive querying for visualization-related queries for each type 
of visualizations (i.e., frequency histograms, binned histograms, 
pivot dot plots, and density plots).  

4.1 Querying Pipeline 
When visualization cards need to be updated (e.g., users activated 
a filter or added a new card), the client requests queries with each 
query corresponding to each card. For example, if users apply a 
filter on data, all visible visualization cards should be updated; 
therefore, the client requests as many queries as the visible cards.  

To understand the querying pipeline of SwiftTuna, suppose that 
an analyst issued two queries, Q1 for a frequency histogram of a 
categorical dimension nat_cd and Q2 for a binned histogram of a 
numerical dimension age. When the queries arrive at the server, 
each query is split into n jobs where n is a tunable number of blocks. 
To alleviate a possible bias in raw data, a processing index (from 0 
to n-1) is randomly assigned to each block without duplication, and 
blocks are processed in this random order. We denote a job as J(Qi, 
Bj) for a query Qi and a block Bj where i is the index of a query and 
Bj is the j-th (0≤j<n) block in the random processing order. In the 
above scenario, if the number of blocks, or n, is 10, 20 jobs are 
created from the queries: J(Qi, Bj) where i=1,2 and 0≤j<10.  

Then, the created jobs are inserted into a job queue in a certain 
order. SwiftTuna supports two scheduling modes: block order and 
list order. The default block order prioritizes blocks over queries. 
In this order, the server executes jobs with smaller processing 
indices first. For example, after finishing the first job, J(Q1, B0), the 
server runs J(Q2, B0) rather than J(Q1, B1). The block order is useful 
when obtaining early results of all queries. In contrast, the list order 
prioritizes queries over blocks, meaning that the server completes 
all jobs related to the first query and moves to the next query. For 
example, in the list order, J(Q1, B1) is executed after J(Q1, B0). 
Users can switch the scheduling mode and reorder the priority of 
queries in the card list panel (Figure 6c). 

When users apply filters, two additional procedures occur. First, 
the server represents the filters using SQL syntax and appends it to 

all jobs as an argument. This allows workers to filter out the data. 
Second, a counting job, which counts the number of rows that 
satisfy the filters, is prepended to the job queue. The result of the 
counting job is sent to the client and used to display the number of 
filtered rows. 

Basically, the server takes a job, J(Qi, Bj), from the job queue and 
runs it on the cluster. Here, since we have a single job and multiple 
workers, we need to split the job again into tasks to leverage the 
parallel processing of Apache Spark. The server separates block Bj 
into a designated number of sub blocks (e.g., the number of workers 
in the cluster), and creates tasks with each task corresponding to 
each sub block. Then, the workers run the tasks in parallel (Figure 
7). The server gathers the results from the workers and sends them 
back to the client as an incremental response for the query Qi. Note 
that at this time, the client has incremental responses for the query 
Qi on the blocks B0 to Bj. If the query is not completed (i.e., j<n-1), 
the client visualizes the responses with error indicators (e.g., 
gradient plots) and shows incomplete progress bars.  

4.2 Prompt Responses 
As the importance of a quick response has been advocated in a 
previous study [14], SwiftTuna provides prompt responses to 
enable users to visually confirm queries in a very early stage of 
analysis. Prompt responses for queries are built from a small sample 
of the entire data stored on the server without passing the queries 
over to workers. This feature allows the server to react to the 
queries almost instantly, helping users to focus their attention on 
analysis. When two or more queries are requested, the server packs 
all prompt responses for the queries and transfers the packed result 
back at once, reducing the network overhead. 

When the client receives a prompt response for a query, it shows 
initial visualizations based on the prompt response. After a few 
seconds, when the first incremental response for the query arrives 
at the client, the client discards the prompt response and replaces it 
with the first incremental response. This is because when the query 
uses binning (e.g., binned histograms), it is impossible to merge the 
two responses (i.e., the prompt response and the first incremental 
response) due to the different sizes and ranges of the bins.  

4.3 Incremental Processing 
Although the first incremental response replaces a prompt response, 
the client accumulates the remaining incremental responses and 
estimates the final results. The detailed procedures vary depending 
on the query type. In this section, we explain the accumulative 
estimation per query type. 

For count queries such as frequency histograms, the 
accumulation procedure is straightforward. Given two incremental 
responses, we compare the frequency of each category and add up 
two frequencies if the same category exists in both responses. For 
the estimation, since we already know the number of all rows in the 
data, we approximate the final results and its 95% confidence 
intervals [24].  

Binned histograms and density plots are similar to frequency 
histograms in that they count the number of rows. However, to 
accumulate incremental responses for those queries, the sizes and 
ranges of the bins used in the responses have to be chosen before 
processing. We could use a fixed range for each numerical 
dimension, but we found that using a fixed range often yielded 
unsatisfactory binning results especially when a number of rows in 
data were filtered out. As a remedy, SwiftTuna adds an additional 
job, a range job, before processing those queries, which calculates 
the minimum and maximum values of a numerical dimension only 
with remaining rows after filtering. Then, the size and ranges of 
bins are determined by uniformly dividing the interval between the 
minimum and maximum values of the dimension. The estimation 

 
Figure 7: Massive parallel processing in SwiftTuna. SwiftTuna 
separates raw data to n blocks (i.e., B0 to Bn-1), and processes each 
block online in a parallel and distributed manner. The client 
aggregates each partial result and visualizes the aggregated result 
to users. Note that the actual processing order of blocks is 
randomized to alleviate a possible bias in the raw data. 
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step is the same as that of the frequency histogram query since they 
are all count estimates. 

Accumulating responses for pivot dot plots is a bit different. 
Pivot dot plots aggregate a numerical dimension over a categorical 
dimension. Currently, four aggregation functions are supported: 
MIN, MAX, MEAN, and SUM. Merging two incremental 
responses for MIN and MAX functions is straightforward. For a 
category in both responses, we compare two MIN (or MAX) values 
in the responses and choose the smaller (or larger) one according to 
the aggregation function. As mentioned before, we decided not to 
estimate the final MIN and MAX values because they are quite 
sensitive to outliers. 

For MEAN and SUM functions, the server provides three values 
for each category in incremental responses: the frequency of the 
category, the sum of a specific numerical dimension, and the 
squared sum of the dimension. When a SUM function is chosen, 
the second value (i.e., sum) is directly visualized. Otherwise, for a 
MEAN function, we calculate the mean by dividing the second 
value (i.e., sum) by the first value (i.e., the frequency of a category). 
The squared sum is used to calculate variance and 95% confidence 
intervals for mean and sum estimates. 

5 EVALUATION: PERFORMANCE BENCHMARK 
To evaluate our system in terms of scalability and responsiveness, 
we conducted performance benchmarks using a real-world dataset.  

5.1 Study Design 
Since we could not find a distributed and incremental visualization 
system that is publicly available, we evaluated the feasibility and 
performance of our system with a real-world large-scale dataset. 
We supposed a practical scenario where an analyst remotely queries 
the data with a laptop in an office. 

Cluster A cluster was hosted on a cloud computing environment, 
Amazon Elastic Compute Cloud (EC2). We created 16 spot 
instances of the r3.8xlarge tier, which was optimized for memory-
intensive application, in the ap-northeast-1 region (Tokyo). Each 
instance was equipped with Intel E5-2670 v2 (32 vCPUs), 244 GB 
of main memory, and two 320 GB SSD storages. To organize a 
computing cluster, we used Hadoop 2.4.0 and Apache Spark 1.6.0 
in a standalone mode. Among 16 instances, one served as a master 
and the remaining 15 instances acted as workers. All instances ran 
on Amazon Linux AMI 2013.03.  

Dataset We used Criteo’s Terabyte Click Logs dataset [9], which 
contained sampled click feedback of online advertisings (ads) for 
24 days. The dataset was 1.03TB in a tab-separated format and had 
4.3B entries with 40 dimensions. The 40 dimensions consisted of a 
binary dimension, 13 numerical dimensions, and 26 categorical 
dimensions. We excluded the binary dimension from benchmarks 
because it had only two different values. Since the dataset was all 
anonymized, we named the numerical dimensions as N0 to N12, 
and the categorical dimensions as C0 to C25. We filled all missing 
values with an integer 0 (for numerical dimensions) and a string 
“empty” (for categorical dimensions). 

We considered the number of blocks (i.e., the separated pieces of 
data for incremental processing), n, as an independent factor and 
tested our system under two different values of n: 240 and 2,400 
blocks. Since the raw data was provided in 24 similar-sized chunks 
(one chunk for one day), we divided each chunk into 10 or 100 
blocks. All blocks were represented in a columnar format (i.e., 
Parquet [3]) and stored in the distributed file system of the cluster. 
During the benchmarks, the blocks were loaded in the main 
memory of the cluster, enabling in-memory calculation. For prompt 
responses, we randomly sampled 0.001% of data (about 10MB, 
0.001% of 1.03TB), and kept the sample on the master of the cluster. 

Client The client was a 15-inch 2015 Mid Mac Book Pro (OS X 
10.11.3; 2.8 GHz Intel Core i7 CPU with 16 GB of main memory). 

The client was located in Seoul, Korea, and connected to the 
Internet through Wi-Fi. The client ran a web browser (Google 
Chrome 49.0.2623.87) and connected to the server. We injected 
additional codes into the client to make it automatically request 
queries, and record timestamps each time a response was returned.  

Query We chose four numerical dimensions (N6, N5, N3, and 
N11) and four categorical dimensions (C25, C7, C3, and C4) that 
had various ranges and cardinalities. Using those dimensions, we 
tested 14 queries that consisted of four binned histograms (Q1 – 
Q4), two density plots (Q5 and Q6), four frequency histograms (Q7 
– Q10), and four pivot dot plots (Q11 – Q14) (Tables 2 and 3). 

Measurement Considering that this work is a system paper in 
the InfoVis field, we mainly focused on measuring the perceptual 
latency of our system rather than using system performance metrics. 
We measured 1) the range or cardinality of related dimensions, 2) 
the latency of prompt responses (the time from when users 
requested a query to when the first feedback on the query was 
shown), and 3) the mean interval between two successive 
incremental responses. Since we supposed an analyst accesses a 
large dataset remotely through Wi-Fi, additional delays could be 
included in the measurement, such as network latency resulting 
from the wireless connection, or the distance between Seoul and 
Tokyo, which we believe to better reproduce real-use cases. We 
repeated each query at least 40 times (100 times for prompt 
responses and measurements with 2,400 blocks, 40 times for 
measurements with 240 blocks). For all time measurements, we 
calculated 5% trimmed mean, which discarded 5% of measures 
from the highest and lowest, respectively.  

Range Approximation For the binned histograms (Q1 – Q4) 
and density plots (Q5 and Q6), the ranges of bins (40 bins for the 
binned histograms and 1,600 bins for the density plots) should be 
determined before actually counting the number of rows for each 
bin. As explained in Section 4.3, we prepended an additional job, 
range job, into a job queue that calculates the minimum and 
maximum values of a given dimension for the entire data. However, 
in our preliminary benchmark, we found that such additional jobs 
took a few minutes, hurting the responsiveness of the system. 
Therefore, we decided to calculate the range of a dimension only 
using the first block, not using the entire data. Since the ranges of 
bins were approximated only using the first block, some outlying 
values that were out of the approximated ranges can be found while 
processing the remaining blocks. We made such values fall into one 
of the two extreme bins (i.e., the first bin that had the minimum 
value, and the last bin that had the maximum value) and counted 
the number of such rows as shown in Table 2 (Out of Range).  

5.2 Results and Discussion 
The results for binned histograms and density plots are shown in 
Table 2. For the measurements that were affected by the number of 
blocks (n), we presented two numbers in a single cell: the number 
out of parentheses was measured when n was 2,400, while the 
number in parentheses was measured when n was 240.  

On average, users were able to receive a prompt response within 
0.5 seconds regardless of the range of a queried dimension and the 
type of the query. When data were split into 2,400 blocks (i.e., n = 
2,400), a block covered approximately 1.75 million rows. About 
two seconds were required to either calculate the range of a 
dimension on the first block (to determine the range of bins) or 
build a binned histogram for one block. This means that users could 
grasp the first incremental response on 1.75 million rows in four 
seconds after receiving prompt responses, and the next incremental 
responses followed every two seconds.  

With respect to the granularity of a block, a smaller-size block (n 
= 2,400) yielded faster responses. However, a bigger-size block 
was preferred in terms of throughput. For example, when n was 
2,400, 1.78 seconds were taken to sweep 1.75 million rows in a 
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block and create a binned histogram for N6 (Q1). However, it took 
only two times longer (3.52 seconds) to process ten times more 
rows (17.5 million rows) when n was 240. This implies there was 
an overhead that cannot be efficiently parallelized, such as network 
latency or the time taken for communication between nodes. 

We approximated the minimum and maximum values of a 
dimension only using the first block, not processing the entire data, 
to rapidly determine the ranges of bins. Only a few thousand values 
were out of the approximated range; however, it is quite a small 
number compared to the size of the entire data (4.2 billions). This 
means that the dimension range estimation only using the first 
block is sufficiently effective in the exploration of large-scale data. 
It would be also useful if the system highlighted those out-of-range 
values. For example, binned histograms and density plots can be 
improved to show those values with visual cues on boundaries of 
visualization. We leave this improvement to future work. 

In Table 3, we presented the results of frequency histograms and 
pivot dot plots. Overall, compared with binned histograms and 
density plots, slightly longer intervals were required for each 
incremental response. As the cardinality of a categorical dimension 
increased, it took longer to create a frequency histogram of the 
dimension (in the order from Q7 to Q10). This can result from 
either the additional number of keys that should be shuffled 
between workers, or the longer network transmission time due to a 
longer list of frequencies. The mean interval between incremental 
responses was not significantly affected by whether an aggregation 
function was applied (Q7 vs. Q11) or the type of an aggregation 
function (Q11 vs. Q12). 

Through our benchmarks, we found practical evidence that 
SwiftTuna could support fluent and incremental data exploration of 
large-scale multidimensional data. To allow users to begin data 
exploration immediately, we may precompute univariate 
histograms (i.e., a binned histogram or a frequency histogram for 
every dimension) only for the initial screen.  

6 IMPLEMENTATION 
The client was written in JavaScript with open-source libraries such 
as D3.js [5], Angular.js, and Bootstrap. The client connected to the 
server via WebSocket to receive incremental responses and 
progresses in real time. For the server, we created a computing 
cluster on Amazon Elastic Compute Cloud (EC2). The number and 

type of instances and the versions of installed software were 
described in Section 5.1. One instance served as a master and 
performed two important roles: supervising workers in the cluster 
as a master and running a web server to which the client connected. 
The web server was written in Python 2.7 upon a micro web 
framework, Flask. When users requested a query to the web server, 
the web server chose an appropriate program (i.e., a driver program) 
according to the query type, and ran the program on the cluster. We 
implemented various driver programs, with each corresponding to 
each query type (e.g., one for binned histograms and another for 
pivot dot plots). The driver programs were implemented in Scala 
2.10.4 using SparkSQL API.  

7 CONCLUSION AND FUTURE WORK 
In this paper, we propose an interactive data exploration system, 
SwiftTuna, which enables fluent information seeking process on 
large-scale multidimensional data. SwiftTuna enables large-scale 
processing by exploiting an in-memory computing engine, Apache 
Spark, which allowed fast and scalable data processing as 
demonstrated in our benchmarks. To provide the responsive 
feedback for interaction, SwiftTuna processes queries 
incrementally while providing prompt responses using a small 
sample, delivering immediate and continual feedback. To achieve 
scalable visualization, we integrate interaction techniques (e.g., 
Focus+Context) into visualizations that are appropriate for large-
scale data (e.g., density plots). We also design two variants of tailed 
charts (i.e., tailed dot plots and tailed gradient plots) to improve 
crowded x-axes in frequency histograms. Since SwiftTuna does not 
resort to a preprocessing scheme (e.g., data cubes), it lends itself to 
multidimensional exploration through filters on multiple 
dimensions.  

Our benchmarks revealed that the number of blocks (n) could be 
tuned to find a balance between responsiveness and throughput of 
the system. As future work, the optimal value for n could be found. 
Similarly, we can adjust the size of a block for better performance. 
For example, in the early phase of processing, we may use a smaller 
block size for responsiveness while increasing the block size as 
processing proceeds, seeking for better throughput. We also plan to 
adopt a better sampling strategy, such as stratified sampling [1], to 
minimize a possible statistical bias. 

Table 2. Benchmarks for Binned Histograms and Density Plots 

 Type Dimension Range Prompt Responses 
(s) 

Range  
Approximation (s)a Out of Range  Incremental  

Responses (s)a 
Q1 Binned N6 0 - 5.2K 0.20±0.028 1.89±0.46 (2.54±0.37) 401 (21) 1.78±0.90 (3.52±0.87) 
Q2 Binned N5 0 - 65K 0.19±0.025 2.03±0.53 (2.60±0.41) 4,270 (1,073) 1.88±0.97 (3.17±0.75) 
Q3 Binned N3 0 - 746K 0.20±0.027 1.84±0.38 (2.53±0.37) 74 (72) 1.77±0.74 (3.44±1.05) 
Q4 Binned N11 0 - 35M 0.20±0.025 1.81±0.35 (2.55±0.40) 10,755 (5,077) 1.91±0.84 (3.54±1.58) 
Q5 Density N6, N5  0.30±0.036 1.91±0.42 (2.57±0.42) 4,625 (1,089) 1.84±0.88 (3.78±0.77) 
Q6 Density N3, N11  0.31±0.040 1.87±0.37 (2.57±0.40) 10,892 (5,149) 1.88±0.61 (3.46±1.05) 

aData are measurements with 2,400 blocks (and with 240 blocks). Type: the type of requested visualizations, binned histograms (Binned) or density plots 
(Density). Range: true range of a dimension. Range Approximation: mean time taken to approximate the range of a dimension using only the first block. Out 
of Range: number of values of a dimension that were out of the approximated range while processing remaining blocks after the first one. Incremental 
Responses: mean interval between two successive incremental responses. 

Table 3. Benchmarks for Frequency Histograms and Pivot Dot Plots 

 Type Dimension Cardinality Prompt Responses (s) Incremental Responses (s)a 
Q7 Frequency Histogram C25 36 0.19±0.028 1.62±0.15 (2.66±0.30) 
Q8 Frequency Histogram C7 1.4K 0.27±0.039 2.79±1.00 (3.50±0.65) 
Q9 Frequency Histogram C3 7.4K 0.27±0.044 2.76±0.85 (3.94±1.21) 
Q10 Frequency Histogram C4 20K 0.39±0.058 2.85±0.78 (3.93±1.31) 
Q11 Pivot Dot Plot MEAN(N11) by C25  0.20±0.024 1.82±1.06 (3.17±0.31) 
Q12 Pivot Dot Plot MIN(N11) by C25  0.20±0.023 1.89±1.09 (3.59±1.35) 
Q13 Pivot Dot Plot MEAN(N11) by C7  0.38±0.051 2.96±1.30 (4.19±1.01) 
Q14 Pivot Dot Plot MEAN(N11) by C3  0.52±0.085 2.53±1.21 (3.88±0.93) 

aData are measurements with 2,400 blocks (and with 240 blocks). Incremental Responses: mean interval between two successive incremental responses. 
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Another way to extend our system is to enrich scalable 
visualizations, such as designing visualizations for two categorical 
dimensions. Finally, it would be also interesting to see how real 
analysts understand our new visualizations (i.e., tailed charts) 
through a user study, as presented in a previous study [14]. 
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